M2R Exam

Fundamentals of data processing and distributed knowledge Semantics of Distributed Knowledge part

Duration : 3h

All documents allowed -No communication device allowed

January 2023

Note: Read all the questions carefully before answering. Justify your answers with respect to the semantics: this is the semantics that justifies their correctness.

Time and points are indicative.

Course questions

[Expectation: 30mn; 4pts]

Here I give only three examples, but it should be around 10 questions, the answers are in the course in general.

Answers to these questions are generally short (if the answer is more than three sentences, it is probably wrong, except for the last one). They are related to the course content.

- 1. For what is it useful to query different sources?
- 2. What does it means for a structure (formula, theory, network, etc.) to be inconsistent?
- 3. In modal logic, is $S \models S'$ defined by $\forall M, M \models S \Rightarrow M \models S'$ or by $\forall M, \forall w \in W_M, M, w \models S \Rightarrow$ $M, w \models S'$? Does one expression implies the other? Why?

G

Application

Triple/graphs

Here is a set of triples (called G):

d:Ringo o2:likes d:Laura d:Ringo o2:likes d:Max d:Max o2:likes d:Laura d:Laura o2:likes d:Max d:Laura o2:likes d:Julia

[Expectation: 2h; 14pts]

d:Laura o2:hobby d:SurfRidingChamrousse d:Laura o2:hobby d:ReadingMadameBovary d:Ringo o2:hobby d:DrumPlaying d:Max o2:hobby d:HorseRidingCamargue

4. Draw the RDF graphs corresponding to G.

Ontologies

Consider the three ontologies O_1 , O_2 and O_3 (\sqsubseteq = rdfs:subClassOf, \bot = owl:disjointWith):

 O_1 O_2 o2:Person 🗌 foaf:Person o1:InDoorSport \sqsubseteq o1:Sport o2:hobby rdfs:domain o2:Person o1:OutDoorSport 🗆 o1:Sport o2:hobby rdfs:range o2:Activity o1:WinterSport □ o1:OutDoorSport o2:Entertainment \sqsubseteq o2:Activity o2:Sport 🗌 o2:Activity O_3 o2:Person $\sqsubseteq \exists_{=1}$ o2:hobby.o2:Activity o3:PerformingArt ⊑ o3:Art o2:Sportperson \sqsubseteq o2:Person $\sqcap \exists_{\geq 1}$ o2:hobby.o1:Sport o3:Literature ⊑ o3:Art o2:Geek \sqsubseteq o2:Person $\sqcap \exists_{\geq 1} o2:hobby.o3:Art$ o3:Gaming ⊑ o3:Art o2:SportFanatic \sqsubseteq o2:Sportperson $\sqcap \forall o2:likes.o2:SportPerson$ and its connection to G (\equiv rdf:type): O_2 O_3 O_1 d:Laura \equiv o2:Person d:SurfRidingChamrousse \equiv o1:WinterSport d:Ringo \equiv o2:Person d:ReadingMadameBovary \equiv o3:Literature d:HorseRidingCamargue \equiv o1:OutDoorSport d:Max \in o2:Person d:DrumPlaying \in o3:PerformingArt d:SailingPaladru \equiv o1:OutDoorSport

5. Is $G \cup O_2$ consistent? Either provide a model or discuss the constraints that could prevent one to exists and why they are violated or not.

d:Julia ⊨ o2:Person

- 6. Does $G \cup O_2 \models_{RDF} d$:SurfRidingChamrousse owl:sameAs d:ReadingMadameBovary?
- 7. Does $G \cup O_2 \models_{OWL} d$:SurfRidingChamrousse owl:sameAs d:ReadingMadameBovary?
- 8. Does $G \cup O_2 \models_{OWL} d:Max rdf:type o2:SportFanatic?$
- 9. Does $G \cup O_2 \models_{OWL} d$:Ringo rdf:type o2:SportFanatic?
- 10. Does $G \cup O_2 \models_{OWL} d$:Laura rdf:type $\neg o2$:SportFanatic?
- 11. Does $O_2 \models_{OWL} o2:SportFanatic \subseteq o2:Sportperson?$
- 12. Does $O_2 \models_{OWL} o2:Sportperson \subseteq o2:SportFanatic?$

Alignments

Consider the following alignments:

$$A_{12}$$

 A_{23}

o1:Sport \leq o2:Sport

o2:Entertainment \geq o3:Art

- 13. Does $A_{23} \models_{\Delta} o2:Activity \ge o3:PerformingArt?$
- 14. Does $A_{12} \models_{\Delta} \mathsf{o2:Sportperson} \sqsubseteq \mathsf{o2:Person} \sqcap \exists_{\geq 1} \mathsf{o2:hobby.o2:Sport}$?

Belief revision

Consider that we add:

o2:Sport owl:disjointWith o2:Entertainment.

to O_2 .

- 15. Does this make $G \cup O_2$ inconsistent? Why?
- 16. Does $\langle \{O_1, O_2 \cup G, O_3\} \{A_{12}, A_{23}\} \rangle \models_{\Delta} \mathsf{o1:Sport} \perp \mathsf{o3:Art}?$
- 17. Does this make $\langle \{O_1, O_2 \cup G, O_3\} \{A_{12}, A_{23}\} \rangle$ inconsistent? Why?
- 18. What are the statements that can be suppressed to restore consistency?

Epistemic logic

- 19. Model the ontologies (without the last axiom added to O_2) and alignments in epistemic logic as in Section 7.6 of the course (Modelling the alignment repair game). This means that three agents are considered each one having an ontology.
- 20. What would the effect of the announcement of o2:Sport owl:disjointWith o2:Entertainment be?

Open question

[Expectation: 20mn; 3pts]

A type of belief revision is partial meet revision which computes the intersection between selected maximal consistent subtheories. One problem is to define how to select these subtheories. Cultural knowledge evolution applies a simple adaptation operator (similar to selecting one theory) to restore local consistency. Could you image how to use the cultural knowledge evolution approach to 'perform' partial meet revision?