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1

Introduction

1.1 Context

Artificial agents are often entrusted with tasks that, until recently, were carried
out by humans. These tasks range from content generation to law enforcement,
healthcare applications and more. In order to accomplish them, agents take dif-
ferent decisions based on how they perceive objects and what they have learned
about them so far. For example, a healthcare agent may have learned that an
elevated heart rate is a sign of acute hypoxic exposure, while a law enforcement
agent may have learned that the same symptom corresponds to a usage of ille-
gal substances. Given their individual knowledge, some agents will thus be more
suitable for accomplishing some tasks, while other agents will be more suitable for
accomplishing different ones.

Yet, this may change over time. Like humans, agents may revise their individ-
ual knowledge based on the feedback they receive from the environment and social
transmission. For example, interacting agents may exchange knowledge by teach-
ing one another. Alternatively, an agent may revise its knowledge by observing
the consequences of other agents’ decisions. Consequently, an agent may uncon-
sciously adopt behavioral traits of agents accomplishing different tasks, pushing
this agent to reconvert to a different task.

How are knowledge traits distributed, when different tasks compete over agent
resources? At one end of the spectrum, one may conceive agent societies consisting
of agents accomplishing several tasks such as farming, fishing, hunting and crafts-
manship. It is expected that by tackling several tasks, these agents may benefit
from developing multi-purpose knowledge. This would in turn increase their facil-
ity to address different, potentially unforeseen tasks. Skills developed for hunting,
may be reused for fishing and vice-versa. On the other end of the spectrum, so-
cieties consisting of highly specialized agents with complementary skill-sets can
be conceived. In such societies, some agents become hunters, some fishermen and
some cooks. It is expected that highly specialized agents will excel in a few tasks,
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relying on other agents for the remaining tasks. Based on these, mixed societies
in which highly specialized agents co-exist alongside multi-purpose agents may
also be conceived. The main objective of our thesis is to examine whether agents
specialize, and if so, whether this is a natural tendency or the result of imposed
economic or social conventions. We decompose this objective into three main ques-
tions. First, do agents transfer knowledge from one task to another? Second, does
assigning different tasks to different agents lead to agent specialization, and if so,
is this beneficial for the societies they belong to? Third, is there any agent repro-
duction strategy allowing for equitable task exploration, i.e., balanced collective
advancement in all tasks?

One way to answer these questions is through cultural evolution, specifically
through cultural evolution of knowledge. Cultural evolution is the theory of evolu-
tion, applied to cultural traits. A cultural trait is a distinct feature that is shared
and evolved within a population. It can be tangible, like a tool, a weapon, a piece
of clothe or intangible, like a language, a norm, a belief. Intangible cultural traits
are essentially learned behaviors passed from one generation to the next one, al-
lowing individuals within a population to interact, communicate and understand
one another. These traits can be furtherly distinguished based on whether they
are unipotent or pluripotent. As unipotent, we consider a cultural trait that serves
a single purpose, e.g., a norm that is valid only on a special occasion. As pluripo-
tent, we consider a cultural trait that can serve several purposes, e.g., knowledge
applying on different tasks.

Cultural evolution of knowledge uses agents to study how knowledge represen-
tations evolve, when pressure is exerted on agents for achieving a common goal.
This goal may be survival, maximizing diversity or other. Here we focus on agents
whose goal is to agree with each other.

In this context, knowledge traits can be considered being equivalent to geno-
types and agent behaviors being equivalent to phenotypes [32]. As such, knowl-
edge traits not only affect how agents decide, but also constitute artefacts that can
be horizontally (intra-generational transmission) or vertically (inter-generational
transmission) transmitted. Essentially, knowledge exchange leads to knowledge
revision, which introduces knowledge variations upon which natural selection can
act. Ultimately, the cultural evolution of knowledge allows us to identify which
knowledge traits persist over consecutive generations and how these traits are dis-
tributed within agent populations.

1.2 Thesis synopsis

It has been previously shown that, by trying to agree, agents not only reach con-
sensus, but also improve the quality of their knowledge [11, 12, 92]. These works
examine agents that tackle the same task and have unlimited memory. However,
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realistic agents have limited memory and may accomplish several tasks. Our goal
is to understand how accomplishing several tasks affects the knowledge acquired
by a population of agents. To that end, we represent knowledge using ontologies
and study their cultural evolution over three dimensions: (1) the number of tasks
assigned to agents, (2) the size of their memory and (3) the overlap among the
different tasks.

In Chapter 4 we consider agents sharing a growing set of decision tasks. These
tasks consist of reasoning over different object properties in order to take abstract
decisions within different abstract domains. Our hypothesis is that multi-tasking
agents tackling tasks that rely on the same properties (100% overlap) are more
accurate than multi-tasking agents tackling tasks that rely on different properties
(0% overlap). We tested this hypothesis by varying the number of tasks assigned
to the agents and whether these tasks overlap or not. Results show that when
deciding for different tasks relies on the same properties, multi-tasking agents are
significantly more accurate. This suggests that it is possible to transfer knowledge
from one task to another, or put differently that by farming agents can become
better at cooking.

In Chapter 5 we consider agent populations assigning different tasks to differ-
ent agents. The agents are initially trained using labeled examples corresponding
to all tasks. Subsequently, each agent receives individual compensation for accom-
plishing a limited subset of tasks. Our assumption was that by trying to specialize
on fewer tasks, agents will improve their maximum accuracy. Hence this should
increase the compensation collectively acquired by a population of agents. We
have shown this to be partially true. Contrary to our assumption, results show
that the number of tasks assigned to agents has no effect on their maximum ac-
curacy. However, it is shown to affect not only the total compensation acquired
by agent populations, but also the way this compensation is distributed to the
individual agents. Given a set of non overlapping tasks, the fewer the tasks as-
signed to each agent, the higher and more equitably distributed the compensation
acquired by them. Further examination of agent ontologies showed findings in [57]
to be a consequence of parasitic knowledge. As parasitic, we define the knowledge
that occupies an agent’s memory while being unrelated to the tasks this agent
accomplishes. Depending on their remaining memory, some agents will succeed
in learning accurate ontologies for the task they accomplish and some other will
not. As a result, the former agents cannot converge on their decisions with the
latter ones. When agents have limited resources, learning to agree and specializing
on fewer tasks are mutually exclusive. Agents can either improve their commu-
nication or their individual maximum accuracy. This was found to be true even
for mono-tasking agents that share the same task and their memory is enough for
accommodating the knowledge required for 3 tasks.

In Chapter 6, we deal with parasitic knowledge by comparing two knowledge
removal approaches. The first approach, used in [56,57], consists of removing leaf
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classes that (a) share the same parent and (b) are associated to the same deci-
sions for the tasks the agents undertake. This method removes some parasitic
knowledge, without affecting agents accuracy on the tasks they undertake. How-
ever, it does not remove parasitic knowledge that was acquired early, e.g., during
the agents initial training. The second approach consists of removing randomly
selected ontology classes. This approach is agnostic about whether the removed
knowledge is parasitic or not and thus may affect the agents’ accuracy on any task,
carried out or not. When agents accomplish one task, this approach improves their
maximum accuracy as it allows for not only relearning previously removed knowl-
edge, but also acquiring new knowledge for which there was not enough memory.
When agents accomplish several tasks, this approach is detrimental to both their
average and maximum accuracy. Results show that when agents remove randomly
selected classes, consensus will be reached regardless of the number of tasks they
carry out. However, when agents accomplish several tasks, this approach leads to
a gradual deterioration of the agents’ accuracy. This deterioration will eventually
stop, with the agents ultimately agreeing based on low accuracy knowledge.

We showed that memory-limited agents will specialize regardless of how many
tasks they accomplish. Additionally, we showed that fixed size agent populations
do not benefit from specialization, unless each task is assigned to an equal number
of agents. When each task is not assigned to an equal number of agents, a popula-
tion will collectively become more accurate on a single task. This will thus render
agent populations very efficient at some tasks and very inefficient at others.

This is due to two reasons. First, the fewer the agents confronting their knowl-
edge for a task, the fewer the adaptations that take place. This limits the explo-
ration of more successful ways of dealing with this task. Second, the less agents
contribute on a task, the less knowledge variation about this task exists. As a
consequence, the less competition will take place among different decisions and
the less successful will the selection be in promoting accurate decisions. For exam-
ple, let an agent population relying on cooking and farming but having less cooks
than farmers. Given this task distribution, this population will be very efficient at
growing crops but very inefficient in transforming harvest into food. Thus, in order
to satisfy its needs in food, this population will need to either resort in exchanging
goods with other populations, or make its cooks work more.

In [56, 57], this is achieved by a priori assigning each task to an equal number
of agents. However, tasks cannot always be equitably distributed, as new tasks
may be introduced at any moment. Can a population advance its knowledge on
all tasks, without a priori assigning each task to an equal number of agents? We
have previously established that knowledge improvement continues while agents
confront their knowledge with that of other agents. When disagreements no longer
occur, the agents’ accuracy stabilizes. This signifies that what could be learned
through social transmission, has already been learned. As a consequence, agents
with a higher than average success rate have lower potential in promoting new
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decisions than agents with a lower than average success rate. The presence of
agents with consistently lower than average success rates, may arise from the fact
that most agents tackle over-explored tasks, while different few agents tackle the
under-explored ones. Our hypothesis is that the agents that have the highest
impact in advancing their populations knowledge, are the ones that have a lower
than average success rate. These are the agents that possess rare knowledge. Our
assumption is that its rarity reflects that it is shaped for an under-represented
task, i.e., a task on which the majority of agents is not yet competent. This task
could thus benefit from additional knowledge confrontation. It has been argued
that while researchers are conservative when they choose which areas to explore,
focusing on under-explored areas is more likely to achieve high impact [37,80].

In chapter 7, different reproduction strategies are considered. Our hypothesis
was that the reproduction of agents with low success rate, i.e., agents possessing
rare knowledge, will allow their societies to restore and maintain the balance in
task distribution. This hypothesis was based on the assumption that at each
generation, over-explored tasks will be assigned to less agents and under-explored
tasks will be assigned to more agents. Eventually, this will lead to an equilibrium
where the probability of producing off-springs will be equal for all agents, i.e.,
there will be no marginal agent sub-population. Results reject this hypothesis.
They show that the vast majority of agent populations will inevitably converge
into a single specialization. Favoring the reproduction of less successful agents
was shown to delay and at times halt this convergence. However, this leads to
a significant deterioration of knowledge correctness. Agents do not improve their
accuracy on the tasks on which they were previously inefficient. On the contrary,
they deteriorate their accuracy on the tasks they previously excelled.

1.3 Key contributions

First, we show that when an agent carries out a task, this affects its capacity to
carry out a different task. The higher the number of tasks assigned to individual
agents, the higher is their average accuracy. The more these tasks overlap in terms
of required capacities, the more the agents tackling them improve their average
accuracy.

Second, we show that specialization emerges when agent resources are restricted
and not when less tasks are assigned to individual agents. Specialization was not
found to increase the agents’ maximum accuracy. Yet, tackling less tasks proved
beneficial for agent populations. The less tasks assigned to individual agents,
the higher and more equitably distributed is the wealth collectively collected by
agent populations. However, the benefits identified during the second contribution
were found to be valid only when (1) the agent populations and tasks remained
constant for the duration of the experiment and (2) each task was assigned to an
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equal number of agents.
Last, we show that the natural tendency of agent populations is to specialize

in the same task, i.e., the majority of agents will excel on one task. Depending
on which agents and thus which knowledge is selected for vertical transmission,
convergence on a single task may be delayed but not avoided.

1.4 Experiments reproducibility
All the experiments in this thesis are reproducible. Source code is stored in an
open repository [61] and experiment results have been fully logged and are publicly
available [49–55].

1.5 Manuscript outline
Chapter 2 has a dual objective. First, it provides fundamental preliminaries re-
garding adaptive artificial populations. Second, it examines how multi-potent
populations acquire, collectively evolve and specialize individual knowledge rep-
resentations. To that end, several examples from artificial and living populations
are presented.

Chapter 3 describes in detail the experimental framework used throughout this
thesis. It is divided into two parts. The first part consists of all the definitions
regarding the entities that constitute the environment, alongside with the notation
describing it. The second part consists of the outline of the general experiment,
used throughout all our experiments. It describes how agents are trained, are
assigned tasks, interact, remove knowledge and adapt their ontologies.

The remaining of the this manuscript is organized over 5 chapters. Four of these
chapters correspond to the experiments carried out. Chapter 4 demonstrates how
knowledge is transferred from one task to another, when these tasks overlap. It
presents a set of hypotheses, the parameters used to test them, as well as the
results showing that multi-tasking is beneficial for artificial populations. Chapter
5 shows how memory limitations and not selective task accomplishment, pushes
agents to specialize their knowledge. Likewise Chapter 4, different hypotheses are
presented and tested, showing collective but not individual benefits arising from
specialization. In Chapter 6, the problem of parasitic knowledge is tackled. In
particular, Chapter 6 presents an experiment that compares different methods for
removing parasitic knowledge. Its results highlight the long-term benefits that arise
from the short-term removal of pertinent knowledge. Chapter 7 demonstrates that
realistic artificial populations of multi-potent agents fail to cover all their needs
unless social and economic conventions are imposed.

Finally, in Chapter 8 a conclusion of this thesis is provided, consisting of its
summary, key contributions and arised perspectives.
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Specialization of cultural traits in artificial
populations

This thesis relies on experimental cultural evolution to study how agents specialize
cultural traits over consecutive generations. In this chapter, we review literature
dealing with: (1) how the transmission of cultural traits leads to behavioral change,
(2) when this is considered as cultural evolution, (3) how cultural evolution is sim-
ulated, (4) how languages and (unipotent) knowledge evolve and (5) how artificial
and natural populations benefit from the formation and specialization of (multi-
potent) traits.

Section 2.1 is divided into two subsections. Subsection 2.1.1 concentrates on
what social learning is, how it affects natural populations and why it constitutes
an alternative for multi-agent systems learning. Subsection 2.1.2 provides a def-
inition for cultural evolution and provides empirical evidence for the presence of
such processes in nature. In Section 2.2, a brief introduction to adaptive agents
and multi-task learning is provided. Section 2.3 introduces experimental cultural
evolution, presenting several experiment design choices, population topologies and
interaction modalities. Section 2.4 and Section 2.5 focus on the cultural evolution
of conceptual artefacts. The first one focuses on the cultural evolution of languages
and the second one focuses on the cultural evolution of uni-potent knowledge. In
Section 2.6, literature concerning specialization is reviewed. It is divided into two
subsections. Subsection 2.6.1 discusses empirical studies on how humans and ani-
mals specialize. Subsection 2.6.2 discusses literature regarding model-based agent
specialization. This chapter’s conclusion is provided in section 2.7.

2.1 Social learning and cultural evolution

Knowledge specialization within the cultural evolution of knowledge can be studied
in two ways: either by using agents interacting and learning from one another, or
through model-based simulations. Since our focus is on knowledge, we chose to
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base our work on agents coordinating while carrying out tasks. To that end,
literature about social learning and its enduring effects through cultural evolution
is reviewed here.

2.1.1 Social learning

With the exception of solitary species, breathing organisms tend to either take
actions collectively, or alter their behavior based on observing others. Their de-
cisions are thus a result of individually acquired knowledge, negotiation, teaching
and imitation to name a few [13,47,78,87]. Wolfs may coordinate on how to take
down a bear and a lizard may learn that a praying mantis is a force to be reck-
oned. This can, for example, be based on observing the fatal outcome of another
lizard trying to devour one. While few works concentrate on what triggers social
learning, extensive literature exists on how teaching and imitation [88, 93] affect
learners [14, 59].

In [47], Galef and Heyes review the most impacting works from the 80s and
90s within the field of study of animal social learning. Through this review, not
only they assess the maturity of this rapidly growing field, but also predict the
direction research will follow within this area. They argue that what was until
then of interest to a limited niche of experimental psychologists and biologists, will
attract scientists from a multitude of other disciplines. These include anthropology,
behavior genetics, economics and robotics to name a few.

[78] provides a survey on different experimental approaches followed by re-
searchers studying animal social learning, both in the wild and controlled (labo-
ratory) environments. Through this work, Reader and Biro highlight that these
environments should be considered as complementary. That is because studies
conducted in the wild often lack sufficient control over the learning process, while
studies conducted in captivity often fail to replicate empirical data due to not
capturing vital environmental conditions. While our work is not directly related
to animal social learning, the argument regarding the validity of "in vitro" so-
cial experiments is something that should be of our concern as well. Conclusions
drawn from agent-based experimentation, while valid under the examined condi-
tions, may not be generalizable to the agents’ living counterparts. Simply put,
what is valid for agents is not necessarily valid for humans and other living beings.

[87], through the study of meerkats, supports that social learning is equally
present in non-primate mammals. Thornton and Clutton-Brock show that the
collective adoption of socially available information depends on the context and
associated costs. In particular, that social learning leads to the formation of group-
wide, persisting traditions. These are cultural traits that persist, i.e., that can be
persistently traced over time. They support that this happens when developing a
skill is intellectually demanding, or the deviation from a norm is associated with a
high cost/risk (e.g., high presence of predators). Lastly, they argue that persisting
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traditions may modify the selection pressures and thus have an effect on how genes
evolve. We consider their findings interesting and relevant to the cultural evolution
of knowledge. First, they demonstrate the reciprocal influence between cultural
evolution and genetic evolution. Second, they associate the adoption of a cultural
trait with the complexity of a task.

Likewise nature, (agents’) environment conditions are subject to change both
spatially and temporally. Thus, individual agents cannot a priori learn behaviors
for all possible situations. This is especially true for static agent environments, i.e.,
environments that do not change over time. To that end, [2] argues that artificial
populations (agents) may use different ways to learn how to perform a task. [70]
shows experimentally that multi-agent systems can improve the performance of
their agents, by extending beyond individual learning. On the one hand, logic-
based agents can take rational decisions based on incorporating domain knowledge.
On the other hand, nature inspired agents may learn how to accomplish tasks
based on observing other agents or interacting with them. For example, an agent
may learn to avoid an action after observing a penalty previously attributed to
another agent. Our framework relies on both methods, by implementing logic-
based agents capable of altering their behavior, based on feedback they receive
from other agents.

2.1.2 Cultural evolution

While different species have demonstrated adaptation triggered by social learning
[62, 87, 94, 95], opinions differ as to whether social learning necessarily implies
cultural evolution.

Often this disagreement is due to the lack of explicit cumulative cultural evo-
lution definition. [68] highlights this ambiguity, by reviewing how this term is
used by researchers and provides a core definition of it. According to Mesoudi
: "the minimum requirements for a population to exchibit CCE (cumulative cul-
tural evolution) are (i) a change in behaviour (or product of behaviour, such as an
artefact), typically due to asocial learning, followed by (ii) the transfer via social
learning of that novel or modified behaviour to other individuals or groups, where
(iii) the learned behavior causes an improvement in performance, which is a proxy
of genetic and/or cultural fitness, with (iv) the previous threesteps repeated in a
manner that generates sequential improvement over time".

This sequential improvement over time is discussed in [8]. The latter argues
that an emerged collective behavior or performance, is only a snapshot within an
enduring evolutionary process. In particular, it supports that each such snapshot
depends on the collective’s previous memory and history of actions. [36] examines
the variation of cultural traits, specifically how complex human creativity leads
to the creation of new cultural traits. Drawing insights from various disciplines
(cognitive science, psychology, archeology to name a few), Fogarty proposes a
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mathematical model for deliberate-creativity. The latter takes as input a number
of problems seeking solutions and the existing cultural traits within a population.
Given these, it calculates the expected number of new ideas and traits, generated
by deliberate-cognitive creativity.

These traits can be transmitted horizontally [23, 42], vertically or obliquely
and the effects of this transmission may be observed several generations later. [79]
discusses the role of social learning in cultural evolution and human adaptability,
allowing humans to develop and evolve complex skills and behavioral traits they
perfect over several generations.

Sometimes cultural evolution is explained using the key principles of the ge-
netic evolution. Yet, while in genetic evolution genetic information is only trans-
mitted during reproduction, cultural information may be adopted, dropped and
re-adopted at any time. [85] champions that cultural evolutionists must abandon
the idea that the success and proliferation of a cultural trait may be predicted by
a measure similar to that of biological fitness. Additionally, contrary to cultural
traits, genes cannot be accumulated by an individual. Yet, cultural accumulation
is what probably allowed humans, to tackle tasks of increasing complexity.

[86] proposes a model of cultural accumulation, taking into account an individ-
ual’s contribution in its population’s total amount of cultural traits. This model
relies on three assumptions. First, that culture is transmitted in a single learning
event per individual. Second, that cultural evolution does not affect genetic evo-
lution and vice versa. Third, that acquiring a cultural trait makes nor less, not
more propable to acquire another cultural trait. Results show two things. First,
that a population’s structure does not affect the total accumulated culture. The
latter is shown to be proportional to the population’s size. Second, that cultural
accumulation within an individual is not affected by the population’s size.

Researchers working on cultural evolution often use mathematical models or
experimental simulations to test their hypotheses. [71] argues that while social
learning in nature can be extremely complex, models may still be adequate for
explaining the behavior of individuals. Using such models, [30] compares the
adaptiveness of individuals that use individual learning and individuals that rely
on social learning.

2.2 Agents and multi-task learning

2.2.1 Agents

Agents are autonomous software entities that accomplish tasks, often designed in
the image of human reasoning. Demazeau defines agents as a software or physical
entities, capable of accomplishing a certain attributed mission in an autonomous
manner or in cooperation with other agents [17]. They can be classified into two
main categories: deliberative agents and reactive agents [97].
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Reactive agents are agents with simple internal representations, whose actions
depend solely on the reflexive reaction to an external stimuli. Their domain of ap-
plication spans from temperature control systems to security systems and robotic
vacuum cleaners. For example, in the case of robotic vacuum cleaners, the stimuli
may be an impact and a reflexive reaction a backward motion followed by a turn of
90 degrees. Among the simplest ways to implement such agents is through prede-
fined condition action rules, i.e., rules in the form: if condition then action. When
the condition becomes true, the appropriate predefined action is taken. Another
way to implement a reactive agent is through finite state machines (FSM).

Contrary to reactive agents, the internal representations of deliberate agents
are complex. According to Wooldridge [96], a deliberative agent is an intelligent
entity that possesses an explicitely represented symbolic model of the world, and in
which decisions (for example about what actions to perform) are made via symbolic
reasoning. Deliberative agents are thus agents who possess knowledge about their
surrounding environment and are able to plan their actions accordingly. This
makes this class of agents ideal for multi-agent system simulation experiments.
Deliberative behaviours are often implemented using the belief–desire–intention
software model [16,76,77]. According to BDI, agents’ functions are organized into
3 components: beliefs, desires and intentions. Beliefs encapsulate what an agent
believes about its environment, alongside what it can perceive using its sensors.
Desires describe what this agent’s objectives are, intentions describe strategies or
sequences of actions in order to achieve these objectives.

A common critisism for BDI agents is the absence of mechanisms allowing
agents to learn from past behaviour or other agents and thus adapt to new situa-
tions [41,73]. One extension of the classic BDI model allowing for agents learning
new behaviours is JaCaMo [9,10].

This thesis focuses on the formation, evolution and specialization of multi-
purpose knowledge. We are thus naturally interested in a subclass of deliberative
agents, adaptive agents, i.e., agents with the capacity to learn and evolve their
reasoning. One agent type within this subclass is the reinforcement-learning agent,
which through trial and error revises its behavior in order to maximize a reward
function. Subsection 2.2.2 reviews literature using reinforcement-learning agents
tackling several tasks.

However, since this thesis focuses on cultural evolution and agent-to-agent
interaction, reinforcement learning is not required. Our definition of adaptive
multi-tasking agents, based on symbolic reasoning and ontologies is provided in
Chapter 3. Unless stated otherwise, the term agents will hereafter correspond to
adaptive agents.
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2.2.2 Multi-task learning

Multitask learning has been shown to significantly improve classification in a vari-
ety of areas, e.g., adversarial robustness [64], visual interconceptual similarity [33],
phenotype learning [39].

Machine learning models achieve high accuracy on a range of computer vision
benchmarks. Yet, they remain vulnerable to adversarial attacks, when imper-
ceptible input perturbations are purposely introduced to the model. Adversarial
robustness refers to the ability of a learning model to remain unafected by such
decoys. With artificial intelligence being increasingly present in time critical ap-
plications, e.g., autonomous vehicles, improving the stability and robustness of
machine learning models is of paramount importance. As a result, it remains an
ongoing challenge in machine learning research. To that end, [64] empirically and
theoretically supports that the number of classification tasks a model is trained on,
is related to its robustness. In particular, experiments on two real-world datasets
show that the higher the number of classification tasks a network is trained on, the
more complex it becomes to successfully attack it. Results thus suggest (1) that
increasing the number of labeled examples does not necessarily guarantee adver-
sarial robustness and (2) that current deep networks remain vulnerable because
they train on too few classification tasks.

[33] tries to minimize the number of classifiers required. The proliferation of
digital cameras and the role social media play in human expression, have led to an
exponential growth of the number of pictures available online. The latter makes
searching for an image within such large datasets difficult. Without efficient and
intuitive keyword search, this task becomes increasingly difficult, if not impossible.
It is thus crucial to improve multilevel image annotation. This is important as
an image may contain several levels of semantics. Annotations should be able
to exploit all local and global image features, along with any existing semantic
connection among different concepts. A greedy solution to the problem is to train
a high number of independent classifiers. In this case, each classifier will be trained
to detect a specific (local or global) feature of the image in question. The objectives
in [33] are three.

First, to exploit the semantic connections that exist within different concepts.
Second, to detect the semantic connection between images, when these images
dispose very diverse local or global features. Third, to distinct between images
that are semantically un-related, yet sharing local or global features. To meet
these objectives, the authors proposed a novel, ontology-based scheme for achiev-
ing automatic hierarchical classification. Results show that the proposed scheme
achieves not only to improve on image classification, but also to successfully bridge
the semantic gap.

Features and concepts are often under-represented within large datasets. For
example, despite the large number of patients present within electronic health
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records, little data exists concerning patients that suffer from Mitral valve steno-
sis. When data is noisy, sparse or non-uniformly distributed, predicting a medical
outcome can be difficult. In order to improve the efficiency of prediction tasks
under such conditions, [39] follows an approach similar to that followed by [33]. In
order to overcome the scarsity of specific concepts and features, multitask learning
is enhanced using an ontology. This ontology, essentially a relationship graph,
relates different phenotypes (concepts) and medical outcomes (predictions). Ex-
ploiting these relationships, allows for predicting medical outcomes based on phe-
notypes that have a higher presence within a dataset. Results obtained using the
proposed ontology augmented framework, showed a significant improvement in
learning performance. Using a publicly available medical record database, authors
demonstrated the efficiency of their approach, achieving an increased efficiency on
several real medical outcome predictions over different MTL schemes.

In [33,39,64], it has been demonstrated that solving tasks jointly using a single
neural network, can improve prediction accuracy, data efficiency and training time.
However, due to a phenomenon called "negative transfer", this is not always true.
In this case, the performance of multitask classifiers can be significantly inferior
to that of smaller independent networks. This can for example be because one
task dominates the other during training, or because the learned features have
high distinguishing capacity in one task but the exact opposite on a different one.
Thus, whether multitask learning is beneficial or not, relies on the relationship
between the jointly trained tasks.

[83] studies how tasks cooperate and compete during classifiers training. To
that end, a framework is proposed for assigning different tasks to a small number
of neural networks. Cooperating tasks are in this case computed by the same
neural networks, while competing tasks are computed by different ones. Although
the proposed framework offers a trade-off between time and accuracy, its training
computation cost is often less appealing. In response to this, the authors present
two distinct strategies. Results show that employing these strategies outperforms
single-task networks as well as multitask networks with all tasks trained jointly.

2.3 Experimental cultural evolution

To understand cultural evolution, experimental methods have been employed to
test hypotheses and predictions of cultural evolution models, providing insight into
real world patterns. These experiments make the liaison between earlier theoreti-
cal models and real-world data (e.g., archeological, historical). Unlike theoretical
models, experiments avoid the bias introduced by the researchers’ intuitions and
assumptions, on how individuals should behave within the cognitive mechanism of
cultural evolution.
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Figure 2.1 Dyadic experiments in multi-agent systems, illustrating interactions
between two agents. The figure demonstrates both one-way and two-way commu-
nication between agents.

2.3.1 Experiment types

Different types of cultural evolution experiments have been proposed for different
fields and applications. [67] offers a classification of these experiments, based on
how cultural traits are transmitted from one individual to another.

Dyadic

Dyadic interactions : participants are placed in pairs, where the first individual is
the learner and the second individual is the teacher. This kind of experiment is for
example recurrent in the experimental study of languages and communication pro-
tocols. For example, [34] uses dyadic interactions to compare two types of language
evolution. To that end, individuals participate into a graphical communication
task. Who these participants interact with, depends on the transmission protocol.
The transmission protocol corresponds to either iterative learning, or social collab-
oration. When participants evolve languages through iterative learning, linguistic
traits are transmitted vertically within locked participants dyads. Simply put, one
parent will transmit cultural information to its offspring. At each generation, a
previously considered offspring, i.e., learner, becomes a parent. Thus, iterative
learning slowly evolves languages in isolation, generation after generation. When
participants evolve languages based on social collaboration, linguistic traits are
also transmitted horizontally. Any participant can transmit cultural information
to any other participant, as long as they are directly connected. As expected, this
leads to participants rapidly converging to a single, publicly accepted language.
Experiments in the cultural evolution of knowledge naturally fall within dyadic
experiments, with knowledge being transmitted either horizontally between dyads
of the same generation or vertically between dyads of consecutive generations.
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Figure 2.2 Transmission chain experiment illustrating the sequential transmission
of cultural traits from one generation or agent to the next.

Transmission chains

In transmission chain experiments, individuals are positioned linearly one after
the other, as if they were links within a chain. The first individual is given an
artefact to complete or process. After this process, the altered artefact is passed
to the second individual and so on. Several parallel transmission chains may exist.
This method has been used to study content biases in the repeated transmission
of written texts [5, 31,48].

[5] uses 92 transmission chains, each one consisting of 4 randomly selected
and assigned to their in-chain positions psychology students. The objective of
this work is to directly compare the survival of negatively and positevely eval-
uated information, across several transmission episodes. Results suggest that a
content transmission bias exists, when an original message is transformed before
being re-transmitted. In particular, humans are shown to either interpret ambigu-
ous information as negative, or favor the transmission of non-ambiguous negative
information.

[48] follows a similar approach, conducting a recall-based transmission exper-
iment. It uses 30 chains with 4 generations of participants that read, recall and
pass descriptions of dominant, prestigious and social football players to the next
generations. Results show a content bias towards prestigious and dominant profiles
over highly social ones.

Closed groups

In closed group experiments, the population is organized into sub-populations
and each individual is assigned to one. Likewise transmission chains, individuals
are asked to complete tasks, e.g., create an artefact or take an action given a
situation. This type of experiment is often used for (1) comparing the performance
between agents that apply social learning and agents that learn individually and
(2) identify when individuals choose to employ social learning instead of asocial
learning. Examples of closed group experiments are [15,29,40,65,66,89,90].

[15] provides, through an online social experiment, empirical evidence on
whether and when humans follow prestige biased social learning. It employs 225
participants organized into three groups, playing a two-round quiz game. When
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Figure 2.3 A parallel transmission chains experiment, illustrating multiple chains
of sequential transmission of information or cultural traits within a population.
These chains may be independent or dependent through the transmission of a
cultural trait to more than one individuals belonging to parallel chains.

a participant does not know an answer, this participant may choose to copy the
answer of another person of the same group. Depending on its group, selecting
from whom to copy the answer may reside on different cues. These cues may be
unrelated (control group), i.e., cues that are not systematically linked to perfor-
mance or success, un-reliable (prestige group), i.e., the number of times someone
has been copied or reliable (success group), i.e., the number of times someone has
been successful. Results show that prestige biased learning may emerge as a social
learning strategy, when direct success information is not available or un-reliable.
This highlights the flexibility of the human species in adopting social learning
strategies, leading to the acceleration of cumulative cultural evolution.

[29] discusses a type of transmission bias, conformity. The latter is an exag-
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Figure 2.4 Illustration of a closed group experiment in multi-agent systems, illus-
trating the behavior and interactions of a fixed group of agents within a controlled
environment. Such experiments allow researchers to study dynamics of interaction,
cooperation, and decision-making within a stable group over time.

gerated tendency to follow the majority, sufficiently strong to increase the size of
this majority over time. Results show that conformist populations may outper-
form non-conformist ones, as long as some basis for effective individual learning is
present.

In [90], 56 participants perform a rest-less two-armed bandit task on a computer
screen. The objective of this experiment is to investigate whether the exploita-
tion/exploration tendency of humans in isolated settings, is able to predict the use
of socially available information in group settings. To that end, participants carry
a first task in isolation, a second task where the choices of another participant
are available and a third task, (once more) in isolation. Results showed that no
significant individual association exists, between the exploration frequency in the
asocial task and the use of the social information in the social task. This suggests
that how humans act in isolated armed-bandit scenarios, is independent to how
they act in group armed-bandit scenarios.

Similar questions are examined in [66]. The latter examines how people choose
among different learning strategies and how these strategies reflect on their ac-
quired payoff. To that end, the task of designing an arrowhead was assigned
to two groups of people, one group of demonstrators and one group of learners.
Demonstrators were given the chance to improve their arrowhead design in solitude
(asocial learning), based on the payoff they acquired over 30 consecutive hunting
episodes. Contrariwise, learners had one more option, copy an existing demon-
strator design based on a series of different social learning strategies : payoff-bias,
conformity, averaging and random copying. While social learning offers the ad-
vantage of avoiding arrowhead designs that are locally optimal, results are in line
with [90]. Overall, the vast majority (77.5%) of the learning performed was aso-
cial. Payoff-bias (copying the most successful demonstrator) accounted for another
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Figure 2.5 Illustration of a migration multi-agent systems experiment. It illus-
trates the movement and interaction of agents within a simulated environment.
The experiment is used to study patterns of migration, spatial distribution, and
interaction dynamics.

19%, leaving a mere 11% to other social learning strategies.

Migration methods

Migration methods experiments are experiments consisting of groups that are not
fixed. Individuals are either replaced by new, naive individuals [4,21,22,25,81], or
individuals are swapped among different groups [27]. These works aim to examine
whether new group members, i.e., immigrants, adapt to an already established
culture.

[4] builds upon previous research, examining how traditions (cultures) appear
and evolve when group individuals are replaced by new, naive ones. To that
end, microsocieties of 4 individuals unanimously choose among 2 different types of
anagrams and receive payoff for solving them. Blue anagrams lead to higher short-
term payoff, accompanied by a time-out penalty. After solving each anagram,
players choosing blue are obliged to wait between 1 and 3 minutes. Since each
generation spans over 12 minutes, the longer the time-out, the more payoff is
potentially lost in the long run. Red anagrams induce no time-out penalty, yet
their individual short-term payoff is low. Thus, choosing to solve a red anagram
is a strategic choice that leads to a higher long-term payoff. Getting the newly
added individuals inline with the established tradition, resides in the previously
existing senior individuals. To that end, senior individuals used arguments that
were factual, untrue or simply directly imposed their point of view. Results showed
evidence of two evolving traditions : (1) regarding which type of anagrams to solve
and (2) how to get the new individuals inline. While in the majority of cases
groups initially favored solving blue anagrams, these groups eventually adopted
traditions that maximized higher long-term (red anagrams) payoffs. The stronger
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Figure 2.6 Illustration of a public goods game, where participants decide how
much of a given sum of money to contribute to a public good. The total contri-
bution is multiplied and equally distributed among all participants, irrespective of
individual contributions.

the dependence between penalty (time-out duration) and payoff, the strongest the
traditions adopted by the microsocieties were.

[25] examines how cultural selection occurs in non-human species. In partic-
ular : (1) whether more successful foraging traditions are culturally selected and
diffused and (2) whether this is affected by replacing population individual with
new, naive ones. To that end, an experiment is performed based on 18 wild-caught
bird populations of the Parus major family. Result showed that these demographic
replacement processes increases the efficiency of foraging within bird populations.
This was not found to be a result of higher innovation rates, but rather due to
higher adoption rates of novel efficient behaviors introduced by immigrant birds.

Economic games

Inspired by economic theory, these games usually focus on cooperative dilemmas
e.g., public goods game [20, 45, 46, 60]. It has been previously hypothesized that
social learning renders societies more cooperative. [20] tests this hypothesis, using
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a public-goods game organized over several sessions and groups. A public-goods
game is an experimental tool often used in economic and social sciences, allowing
for studying cooperation and collective action dilemmas [7, 35]. Participants are
given an initial endownment of money, part of which they can attribute to a
public good. The endownment benefits all participants equally, regardless of their
individual contribution. The dilemma arises because, from an individual point of
view, it is rational for each participant to contribute as little as possible, hoping
that others will contribute enough to provide the public good. However, if everyone
adopts this strategy, the public good may not be adequately funded. Providing
these groups with varying sources of social information, allows to test whether
this changes their cooperation levels over time. Results showed that the access in
social information, i.e., how others contribute and what they get in return, did not
increase cooperation, eventually leading to more "selfish" individual behaviors.
This was found to be especially true when information on how successful other
individuals are, was available. In that case, individuals leveraged this information
to acquire higher individual gains, in detriment to the overall cooperation levels.

[60] examines whether cooperative strategies become traditions that are so-
cially transmitted and as a result, subject to cultural evolution. To that end,
individuals from different villages of a broader Indian forager-horticulturist soci-
ety are recruited. Results suggest that social learning in cooperative environments
differs from case to case, depending on the characteristics of each individual, as
well as these of its environment.

2.4 Cultural evolution of languages

[44] studies how languages evolve over time. To that end, it proposes an experi-
ment where two neural network-modeled agents, without common prior language,
engage in a referential game [63]. Referential games are used among others in NLP,
computational linguistics and experimental cultural evolution. Generally, the term
refers to a task used to study reference resolution, i.e., understanding references
that others make to objects or concepts. The goal of such games is to investigate
whether and how well, participants can achieve a state of conceptual interoper-
ability, i.e., understand each other. Typically, a participant (the speaker) uses its
own language to convey information about an object to another participant (the
listener). The listener’s role is to match the conveyed information to an object
based on its understanding about the environment and the speaker’s language.

In the case of [44], the game consists of matching a sequence of symbols to a
target image. At each round, a target image is randomly selected and presented
to the sender. The sender then comes up with a message (finite sequence of sym-
bols) representing this target image. It then sends this message to the listener,
along with a set of images. The set contains decoy images as well as the target
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one. The goal of the listener is, based on the received message, to distinguish the
target image from the decoy images. Ultimately, the goal of [44] is to examine
whether the messages exhanged between the interacting agents, share characteris-
tics with natural languages. These characteristics often considered a prerequisite
for developing a general-purpose AI. Counterintuitively, results show that training
convergence decreases with the length of the transmitted message. Put differently,
the longer the sequences used by the senders (to describe target images), the faster
the shared languages emerge. Results also suggest the following about the result-
ing language. First, there is redundancy in message encoding, meaning that the
same semantic content can be conveyed through multiple paraphrases. Second,
there is a higher encoding and decoding robustness, indicating that the semantic
content of the symbols in each message has similar discriminative power. As a
result, even if a message is corrupted, the remaining correctly conveyed symbols
are sufficient for the encoding and decoding of the original message.

[43] uses similar agent to agent interaction games to study contact linguis-
tics [69]. Contact linguistics examine how languages evolve, when communities
speaking one language are suddenly exposed to communities that speak a different
one. In the context of our thesis, languages can be seen as equivalent to knowledge
representations shaped for different purposes and isolated communities as agents
specialized on different tasks. Thus, results acquired within contact linguistics can
provide insight into what happens to knowledge when specialized agents interact.

Do these languages evolve to co-exist, or does one language fall to oblivion
while the other one evolves to dominate over all communications? If the former is
true, do languages gradually form a linguistic continuum, allowing for neighboring
languages for being more inter-interpretable? To answer these questions, Myers-
Scotton introduced a multi-agent framework where neural network-modeled agents
exchange messages about their perceptual input. Results lead to several interest-
ing conclusions on how languages evolve. First, under the examined framework,
two agents (language users) are sufficient for a shared language to emerge. Second,
whether two languages will converge depends on the size, density, and topology of
the examined communities. When the population ratios of the communities are
imbalanced, a new majority language emerges as a result of convergence. When
this is not the case, both languages are subjected to gradual simplification, yet
continue to co-exist. The term that is often used for describing such languages
is "creole". Lastly, when a linguistic continuum emerges, agents of neighboring
communities are perfectly capable of communicating with each other. Their com-
munication is as easy as if they did belong to the same community. The latter is
less and less true as the distance between two communities increases.

[26] studies a specific emerging characteristic of natural languages, composi-
tionality. A language is considered compositional when a concept can be expressed
by combining words, each one with its own meaning. Compositionality is what
allows to express an infinite number of concepts, using a finite set of words. If
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it was to be achieved by general purpose A.I, this would greatly improve the
communication among different artificial entities, or among artificial entities and
humans. In the context of knowledge, compositionality may allow an agent to
generalize its individual knowledge representation. This can be particularly inter-
esting when agents are trained based on limited sets of training examples. For
example, an agent that has learned to deal with maintaining car engines and mo-
torcycle brakes, will be able to understand how car brakes work althouth it has
never seen car brakes before.

Work on evolutionary linguistics [69] has previously shown that transmitting a
language from one generation of humans to the next one, significantly enchances its
compositionality. [91] tests this concept on artificial populations that are modeled
using neural networks. Ultimately, it bridges research on language compositional-
ity using several human generations and research on how languages emerge when
artificial agents interact. To that end, an experiment based on a cooperative
dialog-based reference game is conducted. Each interaction takes place between
randomly selected pairs of agents, communicating using discrete symbols. Periodi-
cally, agents are replaced with new, naive ones. Naive agents are initially provided
with a randomly generated language, while the previously existing agents com-
municate using an already grounded one. Pressure is thus put on naive agents to
converge to the grounded languages, leading to a setting that is equivalent to that
of iterative learning. Results show the following: First, replacing agents induces
cultural transmission, which significantly increases the observed language compo-
sitionality. Second, the selection of agents for replacement has no statistically sig-
nificant effect on the observed compositionality. [84] argues that a communication
protocol emerges when agents attempt to minimize the computational complexity
of semantic interpretation.

2.5 Cultural evolution of unipotent knowledge

The cultural evolution of knowledge has been studied in [11,12,92].
In order for agents to successfully coordinate, agents exchange representational

objects that can locally be interepreted in ways that make collective sense. [92]
examines how can collective behavior be stabilized, while each agent organizes its
knowledge, reasons with it and acts autonomously. Put differently, [92] investigates
how agents that initially think and to that end act differently, can gradually agree
on a way of doing things, without necessarily adopting one agent’s way. To that
end, authors propose an experiment based on an algorithm they call "mutual
ontology alignment". This experiment has two stages.

During the first stage, a population of agents is initialized with each agent
assigned a random mapping of the domain of natural numbers. This mapping
is organized over several categories (concepts), each one consisting of randomly
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selected numbers. For example, a mapping may consist of two categories, one for
numbers that are even and one for numbers that are odd.

During the second stage, the agents undergo a finite number of interactions,
each one taking place between two randomly selected agents. For each interaction,
one of these two agents is designated as the teacher, while the other agent is
designated as the learner. The teacher will initiate the interaction, by sending to
the learner one number. This number will be randomly selected within a randomly
selected category of the teacher’s mapping. The learner will receive this number
and find the category to which it belongs, according to its own mapping. The
learner will then select a different number within this category and send it back
to the teacher. If these two numbers fall in the same category within the teacher’s
mapping, the current interaction ends and the experiment proceeds with the next
interaction. If these two numbers do not fall in the same category within the
teacher’s mapping, then one or both agents may adapt their mapping.

Pressure is thus applied to reduce mapping mistakes over time. On an abstract
level, a population collaborativelly designs an ontology that satisfies mutual cir-
cumstances based on non ideal individual ontologies. This work provides a first
formalized approach to a dynamic process of mutual continuous co-alignment of
a collective concept. While it does not identify all the conditions under which
convergence can be achieved, it experimentally shows that the latter can indeed
be achieved. In [92], when the experiment ends, while each agent possesses its own
individual mapping, all mappings are identical. Agents always act in the same
way, because their knowledge is organized in the same way as well. However, this
is not what we necessarilly observe in humans. Furthermore, no notion of whether
the constructed mapping is accurate or not is provided.

When agents and humans alike tackle a task, they end up building individual
knowledge that may be diverse, incomplete or inaccurate. Yet, unless consensus
is achieved, they cannot successfully cooperate. [75] reviews different algorithms
used for achieving consensus in artificial populations.

Inspired by research on cultural evolution of languages, [11] studies how knowl-
edge evolves culturally, as a result of social transmission. In particular, [11] answers
three main questions. First, whether the cultural evolution of knowledge represen-
tations allows individuals to agree on their decisions. Second, whether this process
improves knowledge correctness. Third, whether individuals agree because their
knowledge is identical.

To answer these questions, an experiment sharing similarities with that of [92]
is proposed. It is based on populations of artificial agents, each one representing
its knowledge using an individual ontology. This ontology allows for classifying
objects into classes based on boolean properties and aligning these classes with
learned decisions. The experiment is organized over two stages.

During the first stage, each agent induces an initial ontology, based on a set
of labeled examples. Each example consists of a set of properties, constituting an
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object type and a label, i.e., the correct, uknown to agents decision. For example,
one labeled example could be the following. For an object that has nails, is orange
and has black stripes, one should run. Since this set is different and incomplete
for each agent, different agents are initially able to accurately decide with respect
to different objects (or situations).

During the second stage, pairs of agents will go over a finite number of inter-
actions. At each interaction, a randomly selected pair of agents will be presented
with a randomly selected object. The agents will reason based on their knowledge
and the object’s properties. It should be noted that in this work, all properties
are observable. Based on its reasoning, each agent will then decide what action
to take with respect to the presented object, subsequently disclosing its decision
to the other agent. If the agents agree, their interaction ends successfully. If the
agents disagree, then one of the two agents will adapt its ontology. The latter can
be done by substituting the existing decision, (if all properties are already present
in the ontology), or by extending its ontology (if properties not yet evaluated ex-
ist). Which of the two agents will adapt its knowledge, is decided based on implicit
environmental feedback, received before each interaction. Semantically, the latter
corresponds to the prestige or success bias often found in human interactions.

Knowledge is selected given the pressure applied on agents agreement. The
adaptation leads to variation, which in turn allows for subsequent selection and
potentially further variation. Since the experiment is based on a closed world with
predefined object types and properties, knowledge selection and adaptation stops
when disagreements no longer occur.

Results show that all three paper’s hypotheses are supported. First, agents im-
prove the ratio of successful over all interactions, until it converges to 1. Authors
call this measure success rate. Second, while the pressure is applied on agents
agreeing on their decisions and not becoming more accurate, knowledge accuracy
significantly improves over time. What makes this interesting is that mean accu-
racy improves without explicit environment feedback about decisions correctness.
Third, unlike [92], agents’ ontologies do not become identical. The agents thus
learn to agree, yet not based on identical reasoning.

In [11] the population of agents remains unchanged for the duration of the ex-
periment. Thus, the observed variation is solely due to the initial ontology training
and horizontal social transmission. [12] extends [11] by adding inter-generational
(vertical) transmission to the existing intra-generational (horizontal) one. Previ-
ous results on inter-generational transmission were obtained through drastic se-
lection of who becomes a parent and which knowledge this parent transmits to
its descendants. The objective of [12] is to study how this drastic selection of
agents affects the quality of the transmitted knowledge. It is assumed that allow-
ing for oblique social transmission, will increase ontology variation. Exceeding the
previously achieved variation will allow for agents putting their knowledge in ques-
tion for longer, eventually leading to building more accurate knowledge. Results
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showed the following: First, combining inter-generational and intra-generational
transmission improves the accuracy of agents’ ontologies. Second, when the par-
ent selection constraints are relaxed, the agents’ lifespan significantly affects their
knowledge correctness. If the lifespan of agents is short, agents may transmit to
their descendents, knowledge that has not been sufficiently vetted, and thus is of
low quality (accuracy). If the lifespan of agents is sufficiently long, even if they ver-
tically acquire low quality knowledge due to relaxed parent selection, agents have
a chance in improving it through knowledge selection and horizontal transmission.

The objective of [1] is to study cultural transmission between and within gen-
erations. To that end, it follows an approach similar to [12], periodically replacing
agents by new, naive ones. The naive agents are initially assigned either a random
ontology, or an ontology induced using decisions their parents would take for a ran-
domly selected set of objects. Results suggest that intra-generational transmission
enhances the variability within cultural evolution. This can be particularly useful
when the examined populations live in environments that are subject to constant
change. Despite this, the importance of having both types of transmission for
population evolution is highlighted.

2.6 Specialization of multipotent traits

2.6.1 Specialization in empirical studies

Negative transfer or insufficient resources can be expected by individuals trying to
evolve knowledge with respect to several tasks. Empirical data show that inten-
tionally or not, humans deal with this problem by specializing their knowledge and
skills. Recent works attribute the appearance of specialization to the formation
of comparative advantage [99]. As an example, an individual is better at making
farming tools and another individual is better in using these tools in agriculture.
Specialization ensures that these individuals exploit their skills optimally, by al-
lowing them to allocate more time and resources to what they do best. This has
been previously shown to lead to higher exploration of novel techniques and thus
more efficient production [98].

While intuitive, the aforementioned example comes in contradiction with em-
pirical studies in hunter-gatherer populations [18]. In these, a good hunter may
give away some of his pray, not necessarily as a direct exchange for a service or
good. This may be inherent to the risk of relying on someone else [82]. If the
blacksmith has no clue on how to hunt and if the hunter was to disappear un-
expectedly, the blacksmith would starve to death. This risk could be reduced if
several individuals tackled each task. This could bring competition and assure
survival in case of sudden disappearance of some individuals.

Regardless of the lack of experimental results regarding the origin and impact
of specialization, increased efficiency-productivity is something axiomatically ac-
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cepted in the vast majority if not in all theoretic papers regarding specialization.
This is mainly based on the assumption that the more time an individual spends
on a task, the better this individual becomes at it. While this intuition might hold
for human beings, it does not necessarily extend to other species or machines, nor
is it necessarily connected to the process of specialization itself.

2.6.2 Model-based agent specialization

The opposite side of empirical specialization studies are theoretical models. While
these have proven to be the cornerstone of analysis by allowing testing hypotheses
and assumptions, most of the existing theory regarding the division of labor con-
sists of verbal reasoning. Since specialization is crucial for markets, economists,
keen on mathematical models were among the first to provide models bridging
specialization, the division of labor and the market [99].

Others have approached specialization using controlled experiments. [38] stud-
ies how artificial entities specialize when several rewarding [72] tasks can be per-
formed. The objective of [38] is to examine how the number of agents and the
number of times each task is performed before another task, encourage (agent)
specialization. To that end, an experiment based on reinforcement learning mod-
eled agents is proposed. These agents live in a gridworld environment and re-
ceive reward when succeeding in carrying out tasks. Topographically, the envi-
ronment is divided into three areas of equal surface (number of squares), within
which agents with partial observability and resources are randomly placed at each
episode. These tasks are sequential and consist of moving these resources from
one area to the next one. When the agents succeed in this, they receive a reward,
based on a reward function that favors quick learning and disfavors useless actions
or idling (waiting behaviors). In the end of the experiment, agents are individ-
ually evaluated based on the absolute difference between the times they played
each task divided by all played games regardless of the task. According to this,
an agent that does one task independently of its respawn location, is considered
as specialized. Results show that specialization is on average higher with 6 agents
than it is with 2 agents. Furthermore, the same results also show that not all
agents specialize to the same degree. These agree with [74], where an advantage of
sacrificing cognitive resources in favor of specific tasks, improves efficiency in ant
colonies. However, [74] disagrees with [28], where ants focusing on one task do not
necessarily get more efficient at it. Further results also correlate the number of
times each task is played before the next one, with the fairness and the stability of
the agents learning process. The authors show that the lower this number is, the
more difficult it is for agents to exploit the environment in order to obtain their
reward.

The specialization literature presented so far in Subsection 2.6.2 focuses on two
aspects. The first aspect concentrates on the origins of specialization, i.e., the in
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vitro and in vivo conditions that push artificial and natural populations towards
specialization. The second aspect contentrates on the benefits these populations
may acquire from it. An important aspect concerning this thesis is however over-
looked, that of cultural evolution. None of these works discusses (1) how cultural
traits become specialized and (2) how these specialized cultural traits are accumu-
lated over time.

How specialized cultural traits are accumulated over time has been recently
discussed in [6]. In [6], it is assumed that the effects of specialization may be
ambivalent. On the one hand specialization may allow for collectively undertaking
complex tasks, i.e., tasks that would otherwise require more cognitive resources.
On the other hand, specialization may lead to populations that are less robust
when faced with disruptive events, i.e., sudden demographic and environmental
changes.

While losing rare knowledge can hinder the efficiency and survivability of any
population type, its effects are assumed to be amplified in specialized populations.
To test this assumption, Ben-Oren et al. propose a framework inspired by [58].
This framework is based on the concept of cultural innovations, for which the term
tools is used. Tools, i.e., cultural traits, occur in specialized and non specialized
groups of individuals alike. The more a population is divided into groups that
use non-overlapping sets of tools, the more this population is considered to be
specialized. The proposed framework does not explicitely model any form of cul-
tural transmission. Instead, the tools are periodically created, independently of
the population’s division and the existence of other tools. The innovation rate, i.e.,
the frequency with which new tools are created, is linearly dependent on the pop-
ulation size. Instead of relying on variation and selection, all tools are associated
with a randomly selected positive selection coefficient s. Each unestablished tool
can be stochastically lost with a probability of 1−s. Based on this framework, the
authors examine the relationship between cultural specialization, cultural reper-
toire size (how many distinct tools exist) and the robustness of this repertoire to
disruptive events. Results show that the relationship between the population size
and the number of distinct tools is nonlinear and differs depending on the degree
of specialization.

In summary, specialization was found to increase the number of distinct tools in
large populations and decrease it for small ones. This can be explained by the fact
that in non-specialized populations, the population’s total repertoire of cultural
traits is limited by the capacity of each individual to acquire and accumulate
cultural traits. In specialized populations, this is not a requirement. In this case,
each individual is required to know only a small fraction of all existing cultural
traits.
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2.7 Conclusion
Researchers have previously examined the implications of social learning and social
transmission on the evolution of cultural traits (§2.1). Inspired by this, significant
work has been done in the areas of multi-agent systems and multi-task learning
(§2.2), experimental cultural evolution (§2.3), specialization (§2.6), and pairwise
intersections of these, such as cultural evolution of languages (§2.4) and cultural
evolution of knowledge (§2.5). However, there has been little to no consideration of
multi-tasking agents, cultural evolution of knowledge and specialization altogether.
The objective of this thesis is to bridge these areas by examining how cognitive
restrictions and inter-agent interactions push multi-tasking agents to specialize
their knowledge. To that end, an experimental framework for evolving multi-
potent knowledge using agents is proposed in Chapter 3, allowing for performing
experiments on the formation of general-purpose knowledge (Chapter 4), agent
specialization (Chapter 5), knowledge forgetting (Chapter 6) and task exploration
(Chapter 7).
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A framework for adaptive
resource-restricted multipotent agents

3.1 Introduction

Experimental cultural evolution of knowledge provides valuable insights into how
knowledge representations, such as ontologies, evolve as a result of inter-agent
interaction. Recent works are based on frameworks dealing with agent popula-
tions that are limited to one task and whose resources are unlimited. Using these
frameworks, it has been demonstrated that agents will continue to improve their
knowledge correctness, until they agree on all decisions.

Our objective is to study how the cultural evolution of knowledge is affected,
when several tasks compete over agent resources. To that end, we successively
consider (1) whether agents undertaking semantically overlapping tasks develop
general purpose knowledge, (2) what pushes agents to specialize and how agent
specialization affects them and their populations and (3) whether a population
of agents can equitably improve its knowledge on all tasks. We refer to these
considerations as (a) knowledge transferability, (b) agent specialization and (c)
task exploration respectively. These considerations, combined, will answer how
knowledge regarding different tasks is distributed within a population of agents.

None of the three considerations can be taken into account by the existing
frameworks. The framework closest to our objective is the one used in [11, 12].
However, it does not address: (a) tackling several tasks, (b) task assignment, (c)
task overlap and (d) resource limitations.

To address these, we enhance this framework as follows. Unlike previous frame-
works where agents are limited to a single task, the proposed framework allows
agents to undertake several tasks. Deciding for these tasks relies on specific prop-
erties, which can be shared or distinct. Tasks relying on the same properties are
considered overlapping, while tasks relying on different properties are considered
independent. This distinction allows for examining two main things. First, the
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transferability of knowledge among different tasks. Second, the formation and evo-
lution of specialized knowledge representations. Each agent can be assigned any
number of tasks. Agents tackle these tasks by operating within restricted memory,
reflecting real-world resource limitations. This allows for studying the effects of
tasks competing for memory on the cultural evolution of multitasking knowledge.
Through these, a comprehensive framework for adaptive resource-restricted agents
is provided.

This chapter is divided into two sections. §3.2 provides all the preliminary
definitions regarding the agents, the different tasks, the objects and the environ-
ment that surrounds them. In §3.3, an outline of our experiments is provided.
This outline describes in detail how agents are assigned tasks, acquire their initial
ontologies, interact with other agents, adapt their ontologies and deal with the
exhaustion of their resources.

3.2 Experimental framework
Our experimental framework extends the framework used in [11, 12]. To provide
clarity and continuity, we present definitions and notations of the original frame-
work, as they are fundamental to understanding our extensions. Here, we introduce
agents capable of tackling several tasks that may overlap to varying degrees. This
is discussed in Subsections 3.2.2 and 3.2.3.

3.2.1 Environment

Agents evolve in an environment populated by objects described by a set P of
boolean properties. Objects are therefore described by the presence or absence of
a property p ∈ P , denoted by p and ¬p respectively. Hence, there are only 2|P|

object types, that are gathered in a set I.

3.2.2 Tasks

The term task refers to a piece of work, carried out by an agent. Here, we will
concentrate on a set of decision tasks: making a decision about an object. There
may be different tasks t ∈ T associated to a different set of possible decisions Dt.
In this context, each object o can be considered in regard to any task t ∈ T . A
function h∗(o, t) → Dt provides the correct, unknown to agents, decision for an
object o in regard to a task t.

3.2.3 Agents

Agents are autonomous, co-existing entities, able to perceive and distinguish ob-
jects based on their properties. In this context, a population of multi-tasking
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Figure 3.1 Example of a multi-task ontology for an agent α. Each color represents
a different decision.

agents A, carries out multiple tasks. To this end, agents build and evolve knowl-
edge in the form of ontologies, private to each agent, expressed in ALC [3]. Each
agent k uses its knowledge to compute a function hk(o, t) → Dt which, given an
object o and a task t, provides a decision hk(o, t). Figure 3.1 shows an example of
multi-task knowledge constructed by an agent k. The bottom part represents the
private ontology Oα of agent k, allowing it to classify objects of the environment.
The top part shows a set of decision ontologies, each one containing the valid de-
cisions for a respective task t. Given that an agent k learns at most one decision
for an object o and a task t, each leaf of Ok cannot be aligned more than once
with the same decision ontology.

3.3 Experiment outline

Experiments are initialized with a learning phase. At the end of this phase, each
agent has learnt a private ontology. Once their ontologies learnt, agents will go
through a fixed number of interactions. Depending on an interaction’s outcome,
one agent will adapt its ontology. Figure 3.2 illustrates the flow of the experiment
from the perspective of agent α. More details about how agents learn, define
their scope, interact, forget knowledge and adapt their ontologies are presented in
subsections 3.3.1, 3.3.2, 3.3.3, 3.3.4 and 3.3.5 respectively.
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Figure 3.2 Experiment outline. Elements in bisque color constitute inputs for
different activities (e.g., labeled examples). Elements in violet constitute either
activities (rectangles), or decisions (diamonds).

3.3.1 Agent training

[92] and [11] have already demonstrated the capacity to effectively learn an ontol-
ogy in order to carry out a single type of task. We approach multi-task learning
as a problem of building a multi-purpose ontology. This can be achieved either
through a training set containing labeled samples regarding different tasks, or
through a merging of ontologies learnt from single tasks [24], ultimately leading
to an ontology able to provide a decision for any task t ∈ T . Here we propose a
multi-purpose ontology induction algorithm. We refer to this algorithm as inter-
leaved learning. It is based on a set of labeled samples covering a subset of I, and
thus does not represent all object types. The algorithm is given a set of samples
〈o, t, h∗(o, t)〉 containing:

• an object o, characterized by a set P(o) = {p1(o), p2(o) . . . pn(o)} of boolean
properties

• a task t ∈ T

• a decision h∗(o, t) : I → Dt

Based on these samples, a decision tree is induced. It consists of (intermediate)
parent and leaf nodes. Each parent node nparent contains the following attributes:

• the property evaluated evp(nparent)
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• children nodes childtrue and childfalse, corresponding to evp(nparent) being
true or false respectively

Each leaf node nleaf , contains the following attributes:

• a set of objects obj(nleaf ) classified by nleaf

• a set of decisions des(nleaf ) attached at a node nleaf , with at most one
decision per task

o p1 p2 p3 p4 t h∗(o, t)

o1 1 1 0 0 t1 d1

o2 1 0 0 1 t2 d1

o3 0 1 0 1 t1 d2

o4 0 0 1 0 t2 d2

o5 1 1 0 1 t1 d1

o6 1 1 0 0 t2 d1

o7 0 1 1 0 t1 d2

o8 1 0 1 1 t2 d2
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Figure 3.3 Given a set of labeled examples, agents will induce a decision tree.
The latter is subsequently transformed into an ontology. Each color represents a
different decision.

A learnt tree can be observed in Figure 3.3 center. This decision tree is then
transformed to an ontology inALC. Such an ontology can be observed in Figure 3.3
right. Interleaved learning comes with a side effect. It is possible for an agent to be
able to classify an object but be unable to provide a decision regarding some tasks.
For example, given the ontology in Figure 3.1 and a given object o, described by
p1 u p2, it is impossible to decide with respect to task t1.

3.3.2 Scope definition

Here we implement agents that undertake different subsets of tasks based on prior-
itizing some tasks over others. To that end, we introduce the function priorα(t)→
N returning a unique integer assigned to the task t by an agent α. This integer
ranges from 1 to |T | and represents the priority for the task t among all existing
tasks. Provided with their priority rankings, agents define their corresponding in-
dividual scope, i.e., the set of tasks they undertake during the experiment. In order
to decide whether a task should be included in the task scope, agents compare the
priority of each task t with a variable m, i.e., the maximum accepted priority rank.
If priorα(t) ≤ m, then the task is inside the agent’s scope. If priorα(t) > m, then
the task is outside the agent’s scope. For example, if m equals 1, then the agent
α’s scope will contain only one task, while if m equals |T |, the agent α’s scope will
contain all existing tasks.
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3.3.3 Interaction

For each interaction (Algorithm 1), two agents α and β are randomly selected from
a population of agents. α and β are then presented with an object o and a task t.
They will then provide decisions based on their respective functions hα(o, t) and
hβ(o, t). If an agent is unable to provide a decision, then one is randomly selected.
The agents will then disclose their decisions to each other. If hα(o, t) = hβ(o, t),
the agents agree and their interaction ends successfully. On the contrary, their
interaction ends as a communication failure. In this case, one of the two agents
will adapt its knowledge.

Algorithm 1 Interaction
1: Two agents α and β are randomly selected
2: A task t ∈ T and an object o ∈ I are randomly selected
3: t and o are assigned to agents α and β
4: if α or β contains no decision then
5: A random decision d ∈ Dt is assigned to the agent(s) without a decision
6: end if
7: The agents compare their respective a decisions
8: if hα(o, t) = hβ(o, t) then
9: The communication ends successfully

10: else
11: A subset I∗ ⊆ I is randomly selected
12: Oα and Oβ are evaluated with respect to I∗ ⊆ I and task t
13: if Oα is evaluated higher than Oβ then
14: β will adapt its ontology
15: else
16: α will adapt its ontology
17: end if
18: end if

3.3.4 Memory management

Realistic agents do not have unlimited memory. We model this by limiting the
number of classes per agent’s ontology. When this limit is reached, then agents
will try to forget a part of their knowledge in order to re-gain memory resources
in favor of the tasks they are assigned. We assume that if restricted enough, an
ontology will be able to contain only the properties required to take the correct
decision with respect to a single task. For example, if deciding with respect to the
task t1 depends on Pt1 = {p1, p2} and deciding with respect to the task t2 depends
on Pt2 = {p3, p4}, then if the ontology evaluates only p1 and p2, then if a decision
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regarding the task t2 is returned, the probability of this decision to be correct is on
average 1

|Dt2 |
. For example, let deciding whether the agent should take an umbrella

(decision 1) or not (decision 2), relying solely on the property dewpoint. If the
agent’s ontology does not contain the property dewpoint, then the probability of
an associated decision to be correct is on average 50%. In this subsection, two
mechanisms to forget knowledge are defined: (1) knowledge generalization and (2)
random knowledge removal.

Knowledge generalization

Knowledge generalization is achieved by removing parent nodes that satisfy the
following criteria: (a) their children are leaf nodes, and (b) their children are
associated with the same decision regarding all tasks within the agent’s scope.
Criteria (a) guarantees that no unnecessary forgetting will take place. Criteria
(b) guarantees that no knowledge regarding the assigned tasks will be lost. The
process is repeated recursively, as long as parent nodes satisfying (a) and (b) exist.
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Figure 3.4 Example of knowledge forgetting while interacting with respect to the
task t2. Let the task t2 relying on the property set Pt2 . The property p1 /∈ Pt2 ,
thus p1 does not allow for distinguishing different decisions for the task t2. In this
example, the agent has associated the same decision (in red), to both p4 u ¬p1
and p4 u p1. These two classes can be merged without any loss of knowledge with
respect to t2.

Random knowledge removal

Random knowledge removal consists of removing all the descendant classes of a
randomly selected class. The randomly selected class will then become a leaf class
and will be associated with decisions previously associated to its leaf descendant
classes. When several decisions exist for the same task, one decision per task is
randomly selected.
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Figure 3.5 Let an agent α assigned the task t2, with t2 relying on the property set
Pt2 . The agent α will randomly select the class p4 and remove its three descendant
classes. The class p4 will now be associated with decisions associated with the
recently removed classes p4u¬p1u¬p2, p4u¬p1up2 and p4up1. When more than
one decision exist, one is randomly selected. For example, the class p4 u¬p1 u¬p2
is associated with the decision d1t1 and the class p4 u ¬p1 u p2 is associated with
the decision d3t1. After the knowledge removal, the class p4 will be associated with
the randomly selected d1t1 (green).

3.3.5 Adaptation

We extend the adaptation mechanism presented in [11], by taking into account
the presence of several tasks. As depicted in Figure 3.6, when a communication
failure occurs, one of the two agents will adapt its ontology. This agent can either
change an existing decision, or divide a class into two subclasses as described in
the algorithm 2. In this case, a property is chosen based on the class description
provided by the non-adapting agent. This property will allow the adapting agent
for distinguishing the current object from all the other objects currently classified
in the class to be divided. Only decisions concerning the current task are affected.

3.4 Conclusion

In this chapter, we presented an extended framework for simulating how knowledge
culturally evolves and specializes, when agents interact. We initially introduced:
(1) the objectives of our thesis, (2) the limitations that render existing framework
unsuitable for our objectives and (3) the enhancements required for achieving
them. Based on these, an extension of [61] allowing for the formation of both
multi-purpose and specialized knowledge was proposed. First, rather than sharing
the same single task, agents can now tackle several tasks. These tasks may be the
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Algorithm 2 Ontology adaptation
1: α asks β for the definition of the class classifying the object o
2: β answers with Cβ
3: if Cα 6v Cβ then
4: α asks β for its decision regarding the object o and the task t
5: β answers with hβ(o, t)
6: a property p : p ∈ Cβ, p /∈ Cα is selected.
7: α splits Cα into Cα1 ≡ Cα u ¬p and Cα2 ≡ Cα u p
8: α associates Cα1 with all the decisions previously associated with Cα
9: if No decision regarding t is associated with Cα then

10: α associates Cα with the decision hβ(o, t)
11: end if
12: α associates Cα2 with the decision hβ(o, t)
13: else
14: Cα = Cα u p
15: Associate Cα with all the decisions previously associated with Cβ
16: end if

same for all agents, or different agents may be assigned different tasks. Second,
constraints on agents memory resources were introduced, thereby simulating more
realistic cognitive limitations. Third, the dependency on different object features
when deciding for different tasks was introduced. Given agents’ limited memory
resources, this promotes knowledge diversity and thus potentially specialization
among agents. Fourth, different parent selection criteria for agent reproduction
were introduced, allowing for studying how different evolutionary strategies, im-
pact knowledge specialization. The framework presented here will allow us to
investigate the effects of cultural evolution on how artificial populations that have
limited resources and span over several generations, evolve and specialize multi-
potent knowledge.



38 Chapter 3. A framework for adaptive resource-restricted multipotent agents

DHunting

Hunt Avoid

v v
⊕

DCooking

Discard Cook

v v
⊕

Oα

¬nails nails

v v

Rabbit

nails,¬poison

Oβ

¬poison poison

v v

DHunting

Hunt Avoid

v v
⊕

DCooking

Discard Cook

v v
⊕

Oα

¬nails nails

v v

Rabbit

nails,¬poison

Oβ

¬poison poison

v v

nails u ¬poison nails u poison

v v

Figure 3.6 Subsequently to a communication failure, the agent α will split the
class nails into two sub-classes by additionally evaluating the property poison.
The first sub-class, nails u poison will be now associated with the same decision
as agent β’s (Hunt). The second decision will be associated with the decision
previously associated to the class nails (Avoid).
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Knowledge transferability among different
tasks

The cultural evolution of knowledge has been previously shown to enhance the
accuracy of interacting agents [11,12]. In these, agents share the same single task:
taking an abstract decision within an abstract domain. In [11], the agents’ goal
is to take identical decisions regarding a set of environment objects. Eventually,
agents learn to agree over a single decision task, yet not necessarily on the same
basis. For example, two agents may both decide to visit Barcelona. Agent α may
base its decision on the temperature property, while agent β may base its decision
on the ticket_price property.

However, several tasks may exist. We build on [11, 12] by introducing agents
capable of taking abstract decisions within several domains.

Deciding for these tasks may rely on a set of common properties. For example,
the property temperature may be used in order to choose a destination (task 1).
The same property may also be used to decide whether to wear a T-shirt (task
2). However, the property temperature may be completely irrelevant to choosing
a movie (task 3). We assume that when this set is not empty, agents carrying
several tasks may develop multi-purpose knowledge, i.e., knowledge that can be
transferred among different tasks.

Based on this, we formulate the following hypothesis: multi-tasking agents,
tackling tasks that rely on the same properties, are more accurate than multi-
tasking agents tackling tasks that rely on different properties. We test this hy-
pothesis by varying two parameters. The first parameter is the number of tasks
assigned to each agent. The second parameter the number of common properties
shared among the different tasks. Two variations of the second parameter are ex-
amined: Tasks either rely on the same properties, or rely on different ones. We
then evaluate agent ontologies based on their contribution to promote successful
interactions and provide accurate decisions. Based on this evaluation, the following
is shown: when agents tackle tasks based on common properties, knowledge built
by an agent while tackling one task, improves its accuracy on another task. We
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thus conclude that it is possible to transfer knowledge from one task to another.

4.1 Experimental setting

4.1.1 Hypothesis

Multi-tasking agents tackling tasks that rely on the same properties are more
accurate than those tackling tasks that rely on different properties.

4.1.2 Parameters

The experiment is executed under six setups, corresponding to agents tackling
one to three tasks, that either fully overlap (100%) or do not overlap at all (0%).
Each setup is run 20 times and its results are averaged. One run consists of
80000 interactions with each interaction taking place among two agents. These
agents are randomly selected out of a total population of 18 agents. When their
memory is exhausted, these agents free memory by generalizing their knowledge
(Subsection 3.3.4). Their environment contains 64 different object types, each one
perceivable through 6 different binary properties. The agents are initially trained
with respect to all |T | = 3 tasks. For each task, 4 different decisions exist. Deciding
with respect to different tasks always relies on 2 out of the 6 binary properties.
When tasks overlap, these 2 properties are the same for all tasks. When the
tasks do not overlap, deciding with respect to different tasks relies on a different
pair of properties. To induce its initial ontology, each agent takes into account a
randomly selected 10% of all existing labeled examples. As a consequence, there
may be overlap between the training of two agents. The agents subsequently
undertake tasks within their scope. To decide which agent adapts its knowledge
in case of disagreement, agents compare their scores. Their individual scores are
attributed to them by the environment between two consecutive interactions. They
are calculated based on a randomly selected corpus consisting of 60% of all existing
training samples.

4.1.3 Measures

Success rate

To evaluate the outcome of agents’ interactions and conclude on whether agents
converge on their decisions, we use the success rate, used in [11]. Each interaction k
is considered successful if the decision of the first randomly selected agent αk about
an object ok and a task tk, hαk

k (ok, tk), is the same with that of the second randomly
selected agent βk about the same object ok and task tk, hβkk (ok, tk). The success rate
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Table 4.1 Summary table of parameters (independent variables)

Parameter Value
Runs 20

Interactions 80000
Generations 1
Agents |A| 18

Memory capacity 12 classes
Memory release technique Generalization

Tasks |T | 3
Assigned tasks (scope) {1,2,3}

Object types |I| 64
Properties 6

Properties per task |Dt| 2
Task overlap {0%, 100%}

Decisions per task 4
Training ratio 0.1
Score ratio 0.6

measure can then be defined as the proportion of successful interactions over all
performed interactions until the nth interaction. It is calculated using the following
formula:

SR(n) =
1

n

n∑
k=1

I[hαk
k (ok, tk) = hβkk (ok, tk)]

Where:

• αk and βk are agents randomly selected for the kth interaction.

• ok is the object and tk is the task involved in the kth interaction.

• I is the indicator function that returns 1 if the condition inside is true, and
0 otherwise.

• n is the total number of interactions.
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Task accuracy & task accuracy derived measures

To evaluate the agents’ performance on specific tasks, we adapt the accuracy
measure introduced in [11]. We refer to this as task accuracy TAC(α, n, t). We
define it as the proportion of object types for which a correct decision is made,
with respect to a given task t, by an agent α on the nth iteration of the experiment.
It is calculated using the following formula:

TAC(α, n, t) =
|{o ∈ I : hαn(o, t) = h∗(o, t)}|

|I|

Where:

• α is the agent whose accuracy is being evaluated.

• n is the iteration number.

• t is the specific task being considered.

• I is the set of all object types in the environment.

• o is an object type within the set I.

• hαn(o, t) is the decision made by the agent α for the object o on the task t at
the nth iteration.

• h∗(o, t) is the correct decision for the object o on the task t.

Given TAC(α, n, t) the tasks in which an agent α performs the best BPT and
the worst WPT can be identified. BPT and WPT are defined as follows:

BPT(α, n) = arg max
∀t∈T

TAC(α, n, t)

WPT(α, n) = arg min
∀t∈T

TAC(α, n, t)

They allow for calculating an agent α’s accuracy on its best and worst performing
task respectively:

BTAC(α, n) = TA(α, n,BPT(α, n))

WTAC(α, n) = TA(α, n,WPT(α, n))

Throughout this thesis, the terms best task accuracy (BTAC) and worst task
accuracy(WTAC) are interchangeable with maximum and minimum accuracy.

Lastly, an evaluation of an agent’s mean performance over all tasks in T , can
be obtained by calculating its mean accuracy:
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Figure 4.1 (a) average accuracy, (b) accuracy on best task and (c) success rate
for different number of assigned tasks and common properties.

AVAC(α, n) =
1

|T |
∑
t∈T

TAC(α, n, t)

4.2 Results and discussion

Figure 4.1a shows that assigning more tasks to agents, improves their average
accuracy. This improvement is higher when agents tackle tasks that rely on the
same properties. On the one hand, when tasks rely on different properties, agents
tackling 3 tasks are 9% more accurate than agents tackling 1 task. On the other
hand, when tasks rely on common properties, agents tackling 3 tasks are 55%
more accurate than agents tackling 1 task. This shows that agents tackling tasks
relying on a common set of properties, may improve their accuracy on one task by
carrying out another task. Results thus support our hypothesis.

Figure 4.1b shows two things. First, agents tackling tasks that rely on the same
properties achieve a higher accuracy on their best task, compared to agents tack-
ling tasks that rely on different properties. This indicates that while the agents
may abstain from some tasks, their ontologies contain multi-purpose knowledge,
acquired during the initial ontology induction phase. This further supports our
hypothesis. Second, when tasks rely on different properties, the effect of the num-
ber of tasks assigned to each agent on the accuracy for its best task, is statistically
insignificant (p > 0.01). This indicates that when tasks rely on different proper-
ties, learning to decide with respect to one task is not related to learning to decide
with respect to a different task.
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Figure 4.1c shows that tackling less tasks or having tasks that rely on common
properties improves the success rate. This is due to two reasons. The first one is
that the fewer the assigned tasks, the fewer are the decisions over which agents need
to agree. The second one is that the more tasks rely on common properties, the less
non relevant knowledge may be present to an agent’s initially induced ontology.
Furthermore, while success rate improves over the course of the experiment, it
does not converge to 1. This indicates that the final ontologies do not allow agents
to reach consensus. This can be explained by the limitation of resources: agents
may lack the resources required to learn to decide accurately for all assigned tasks
and objects. As a result, they are able to decide accurately for different subsets
of the existing object types at a given time. Thus, unless the different subsets
coincide for all agents, consensus cannot be achieved. As shown by the blue curve
in Figure 4.1c, the latter was shown true even when agents interact over the same
single task.

4.3 Statistical Analysis
Analysis of variance shows that the number of common properties among different
tasks, has a statistically significant impact (p < 0.01) on all measures. The number
of assigned tasks has a statistically significant impact on (1) the success rate and
(2) the average accuracy. When tasks rely on common properties, the latter has a
statistically significant impact on the agents accuracy on their best task (maximum
accuracy). The boxplots 4.2, 4.3 and 4.4 portray how each respective measure
varies with the tasks overlap and the number of tasks and generations.

Table 4.2 Summary of p-values from one-way ANOVA for different numbers of
tasks. The table is organized by measure and percentage of overlapping properties.
It examines the effect of the number of tackled tasks for a given overlap percentage.

Measure 0% Overlap 100% Overlap

Average accuracy 1.60e-06 2.37e-18
Accuracy on best task 0.064 0.044
Success rate 1.30e-17 0.004

4.4 Conclusion
In this chapter we considered knowledge transferability, i.e., how knowledge ac-
quired while doing one task can benefit a different task. We hypothesized that
agents tackling tasks that rely on common properties, benefit from the formation
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Figure 4.2 Success rate grouped by the number of tasks and generations. Boxes
in red correspond to setups where the carried tasks depend on the same properties
(100% overlap). Boxes in yellow correspond to setups where the carried tasks
depend on different properties (0% overlap).
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Figure 4.3 Average accuracy grouped by the number of tasks and generations.
Boxes in yellow correspond to setups where the carried tasks depend on different
properties (0% overlap).
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Figure 4.4 Maximum accuracy grouped by the number of tasks and generations.
Boxes in yellow correspond to setups where the carried tasks depend on different
properties (0% overlap).

Table 4.3 Summary of p-values from one-way ANOVA analysis for different num-
bers of tasks. The table is organized by measure and percentage of overlapping
properties. It examines the effect of task overlap percentage for a given number of
tasks.

Measure 1 Task 2 Tasks 3 Tasks

Average accuracy 5.72e-08 2.22e-21 4.32e-06
Accuracy on best task 5.52e-05 1.68e-12 5.92e-12
Success rate 8.08e-07 2.30e-13 2.22e-13

of multi-purpose knowledge. We test this hypothesis by introducing agents that
tackle an increasing number of increasingly overlapping tasks. The experimental
results support this hypothesis. On the one hand, it is shown that when agents
tackle tasks that rely on common properties, knowledge is transferred from one
task to another. On the other hand, when these tasks rely on different properties,
tackling additional tasks does not affect the agents accuracy on their best task.
Thus, deciding between tackling one or several tasks, depends on the agents ob-
jective and the setup of their environment. The agents objective corresponds to
whether they seek to optimize their accuracy on average or on their best task. The
environment setup corresponds to whether the tasks depend on common proper-
ties or not. The experiments rely on minimal hypotheses about the environment,
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hence the results apply to a wide range of environments. These may serve as an
insight on how agents evolve their knowledge within more complex environments.
Such environments are examined in the following chapters.





5

Knowledge specialization in
resource-limited agents

Chapter 4 focuses on how knowledge is transferred from one task to another, when
taking accurate decisions for different tasks relies on shared properties. Among
others, results showed that the more tasks overlap, the more beneficial multitasking
is. However, little is known about agent specialization. Do agents specialize their
knowledge when they focus on fewer tasks? Do any benefits arise when different
tasks are assigned to different agents? We approach these questions from two
perspectives. From an agent society’s perspective, the interests of an agent may
come in conflict with these of its society. Simply put, what is beneficial for the
individual prosperity of an agent may not necessarily be equally beneficial for agent
societies and vice versa. Our first hypothesis is that agents that undertake fewer
tasks will achieve a higher accuracy on their best task than agents that undertake
all available tasks. We assume that by interacting on a limited set of tasks, agents
will refrain from polluting their ontologies with irrelevant knowledge. These agents
are expected to be more accurate on some tasks than others, to the detriment of
their average accuracy. Our second hypothesis is that the more accurate agents
become on their best task, the more prosperous their societies are. Our assumption
is that by analogy to our world, the agents’ world will thrive through specialization.

We organize this chapter in two parts. In the first one, agents with unlimited
memory undertake a limited set of tasks, henceforward referred to as scope. Taking
correct decisions for each task relies on different properties. For example, deciding
on whether to take an umbrella may rely on the property relative_humidity while
deciding on whether to wear a t-shirt may rely on the property temperature. In
the second part, agents undertake the same tasks, while facing memory limita-
tions. Likewise Chapter 4, we implement these limitations by setting a maximum
number of classes to be maintained in an agent’s ontology. When the agents reach
these limitations, they remove parts of their knowledge that are not relevant to
their scope. To that end, agents employ knowledge generalization, presented in
Subsection 3.3.4. Two sets of measures are used to evaluate the results. The first
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set evaluates results from the perspective of individual agents and allow for assess-
ing whether an agent is specialized. We consider agents specialized if the following
criteria are met:

1. Agents average accuracy is lower than their accuracy on their best task.

2. Agents tackling several tasks are less accurate on their best tasks, than agents
that tackle a single task.

The second set evaluates results from the perspective of agent societies. From
this perspective we are interested among others in: (1) the ontologies’ contribu-
tion in promoting agreement among agents, (2) the societies’ total collectively
accumulated points, and (3) how these points are distributed among the agents.
Section 5.1 presents a set of hypotheses along with the protocol used for testing
them. Test results are presented in §5.2.

5.1 Experimental setting

5.1.1 Hypotheses

Hypothesis 1: The fewer tasks the agents tackle, the higher is their accuracy on
their best task.

Hypothesis 2: The more agents improve their best task accuracy, the more pros-
perous and equitable their populations are.

5.1.2 Parameters

Each experiment is executed under 12 setups, corresponding to agents that tackle
1 to 3 independent tasks with their memory limited to 4, 8, 12 and 64 (unlimited
memory) classes respectively. Each setup is run 20 times and its results are av-
eraged. One run consists of 80000 interactions with each interaction taking place
among two agents. These agents are randomly selected out of a total population
of 18 agents. Depending on the setup, each agent is assigned 1 to 3 tasks. When
the agents’ memory is exhausted, they free it by generalizing their knowledge
(Subsection 3.3.4). Their environment contains 64 different object types, each one
perceivable through 6 different binary properties. The agents are initially trained
with respect to all |T | = 3 tasks. For each task, 4 different decisions exist. Choos-
ing one decision relies on 2 out of the 6 binary properties. Since the 3 tasks do
not overlap, deciding with respect to different tasks relies on a different pair of
properties. Each agent induces an initial ontology based on a randomly selected
10% of all existing labeled (training) examples. As a consequence, there may be
overlap between the training of two agents. The agents subsequently undertake
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tasks within their scope. To decide which agent adapts its knowledge in case of
disagreement, agents compare their scores. These are attributed to them by the
environment between two consecutive interactions. They are calculated based on
a randomly selected corpus consisting of 60% of all existing training samples.

Table 5.1 Summary table of parameters (independent variables)

Parameter Value
Runs 20

Interactions 80000
Generations 1
Agents |A| 18

Memory capacity {4,8,12,64} classes
Memory release technique Generalization

Tasks |T | 3
Assigned tasks (scope) {1,2,3}

Object types |I| 64
Properties 6

Properties per task |Dt| 2
Task overlap 0%

Decisions per task 4
Training ratio 0.1
Score ratio 0.6

5.1.3 Measures

Additionally to the measures defined and used in Chapter 4, here we define :
(1) the scope accuracy (SCAC), (2) the correct decision rate (CDR) and (3) the
P90/P10 of agents’ accumulated points.

Scope accuracy

Similarly to different accuracy measures defined in Chapter 4, the scope ac-
curacy (SCAC) evaluates the knowledge correctness of agents. In particular it
evaluates the average accuracy of agents, in the tasks they undertake. Scope ac-
curacy is based on the tasks each agent undertakes. These constitute a subset of
T , denoted as S. Based on this, scope accuracy is defined as follows:
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SCAC(α, n, S) =
1

|S|
∑
t∈S

TAC(α, n, t)

Where:

• α is the agent whose accuracy is being evaluated.

• n is the iteration number.

• t is the specific task being considered.

• S is the set of tasks each agent undertakes.

• TAC(a, n, t) is the accuracy of agent α, on task t, for the iteration n (defined
in Chapter 4).

Correct decision rate

In order to evaluate the efficiency of an agent population in taking decisions,
the measure of correct decision rate (CDR) is introduced. It is defined as the pro-
portion of correct decisions taken, over all decisions taken until the nth interaction.
When the two interacting agents agree, this decision (hfinalk ) is the one taken by
both agents. When the two interacting agents disagree, the decision taken into ac-
count is that of the agent exhibiting the highest accuracy in the currently involved
task. We formulate correct decision rate as follows:

CDR(n) =
1

n

n∑
k=1

[
I(hfinalk = h∗(ok, tk))

]

Where:

• n is the total number of interactions or iterations until now.

• k is the current interaction.

• ok is the object involved in the k-th interaction.

• tk is the task involved in the k-th interaction.

• α is the first randomly selected agent involved in the k-th interaction.
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• β is the second randomly selected agent involved in the k-th interaction.

• hα(ok, tk) is the decision made by agent α for object ok and task tk.

• hβ(ok, tk) is the decision made by agent β for object ok and task tk.

• h∗(ok, tk) is the correct decision for object ok and task tk.

• TAC(α, k, tk) is the Accuracy of agent α at iteration k for task tk.

• TAC(β, k, tk) is the Accuracy of agent β at iteration k for task tk.

• hfinalk is the final decision made in the k-th interaction.

And hfinalk is (defined as follows:

hfinalk =


hα(ok, tk) if hα(ok, tk) = hβ(ok, tk)

hα(ok, tk) if hα(ok, tk) 6= hβ(ok, tk) and TAC(α, k, tk) > TAC(β, k, tk)

hβ(ok, tk) if hα(ok, tk) 6= hβ(ok, tk) and TAC(β, k, tk) > TAC(α, k, tk)

Decile dispersion ratio (P90/P10)

In order to evaluate the inequality in points acquired within agent populations,
an adaptation of the decile dispersion ratio (P90/P10) [19] is used. We define it as
the ratio of the sum of points collectively acquired by the poorest 90% of the agent
population (sumP90), over the sum of points collectively acquired by the richest
10% of the agent population (sumP10). This measure thus expresses the prosperity
of the richest agents, as multiples of that of the poorest ones. It is calculated as
follows:

• Let A = {a1, a2, . . . , am} be the set of m agents participating in the experi-
ment.

• Let P n
i be the total points accumulated by agent ai after n iterations of the

experiment, where i ranges from 1 to m.

• Let P ′ = {P ′1, P ′2, . . . , P ′m} be the sorted set of points such that P ′1 ≤ P ′2 ≤
. . . ≤ P ′m.

The 90th Percentile is the value within which 90% of the points in P fall. It is
calculated as follows:
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1. Compute the position k90 = 0.9× (m+ 1).

2. Separate k90 into its integer part bk90c and fractional part f90, such that
k90 = bk90c+ f90.

3. Compute the P90:

P90 =

{
P ′bk90c if k90 is an integer
P ′bk90c + f90 × (P ′bk90c+1 − P ′bk90c) otherwise

The 10th Percentile is the value below which 10% of the points in P fall. It is
calculated as follows:

1. Compute the position k10 = 0.1× (m+ 1).

2. Separate k10 into its integer part bk10c and fractional part f10, such that
k10 = bk10c+ f10.

3. Compute the P10:

P10 =

{
P ′bk10c if k10 is an integer
P ′bk10c + f10 × (P ′bk10c+1 − P ′bk10c) otherwise

The respective sums of points within the 90th and the 10th percentiles are
calculated as follows:

sumP90 =

bk90c∑
i=1

P ′i + f90 × P ′bk90c+1

sumP10 =

bk10c∑
i=1

P ′i + f10 × P ′bk10c+1

Finally:

DDR =
sumP90

sumP10
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Figure 5.1 Average accuracy for different memory and scope sizes. Different
subplots correspond to different memory sizes (4, 8, 12 and unlimited classes).
Different curves correspond to different scope sizes |scope| = {1, 2, 3}.

5.2 Results and discussion

Here we present and discuss results acquired by varying the agents’ scope and
memory size. Each figure consists of 4 subfigures, each one corresponding to a
different memory size (4, 8, 12 and unlimited classes). Within such subfigure,
different scope sizes are represented by curves of different color and pattern.

5.2.1 From an agent’s perspective

Figure 5.1 portrays the evolution of the average accuracy for different scope and
memory sizes. It shows that the agents average accuracy is not affected by the
size of their scope. This is due to the imposed agent limitations. Our environment
consists of 3 tasks, each one relying on 2 out of 6 total properties. The agents’
ontologies are restricted in such a way, that on average they contain 2 different
properties. Two cases can be distinguished. In the first case, an agent learns
to take highly accurate decisions for one task and inaccurate decisions for the



56 Chapter 5. Knowledge specialization in resource-limited agents

0 20000 40000 60000
iteration

0.0

0.2

0.4

0.6

0.8

1.0
m

ax
im

um
 a

cc
ur

ac
y

(a) 4 classes

0 20000 40000 60000
iteration

(b) 8 classes

0 20000 40000 60000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

im
um

 a
cc

ur
ac

y

(c) 12 classes

1 task 2 tasks 3 tasks

0 20000 40000 60000
iteration

(d) unlimited classes

Figure 5.2 Maximum accuracy for different memory and scope sizes. Different
subplots correspond to different memory sizes (4, 8, 12 and unlimited classes).
Different curves correspond to different scope sizes |scope| = {1, 2, 3}.

remaining tasks. In the second case, an agent learns an ontology that allows it
to take averagely accurate decisions for several tasks. This translates into agents
that demonstrate average accuracies that are statistically indistinguishable to each
other.

Figure 5.2 portrays the evolution of agents’ accuracy on their best task (max-
imum accuracy), for different scope and memory sizes. The sub-figure 5.2(d),
corresponds to unrestricted agents. The sub-figures 5.2(a), 5.2(b) and 5.2(c), cor-
respond to agents with ontologies limited to 4, 8 and 12 leaf classes respectively.
Examining the sub-figure 5.2(d), the following observation may be drawn. Agents
that have unlimited memory do not benefit from limiting their scope. More specif-
ically, Figure 5.2(d) shows that agents tackling fewer tasks, demonstrate a lower
best task accuracy compared to agents that tackle all tasks. In conjunction with
Figure 5.1, the sub-figures (a), (b) and (c) show that the best accuracy agents
whose memories are limited to 4, 8 and 12 classes is significantly higher than their
average accuracy. Hence, these agents specialize on specific tasks. However, this
specialization is not related to the size of their scope, but rather to their memory
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limitations. These agents can become accurate at most on one task, regardless of
the size of their scope. In other words, the fact that agents may abstain from all
interactions but those that regard the single task they undertake does not allow
them to improve their average accuracy on their best task (maximum accuracy).
On the one hand, the best task accuracy of restricted agents is not affected by
the size of their scope. On the other hand, the best task accuracy of agents with
unlimited memory is higher when agents tackle all tasks. Based on Figures 5.1
and 5.2, hypothesis 1 is rejected.

Additionally, results show that when agents have limited resources, the goals
of maximizing accuracy in specific tasks and reaching consensus are mutually ex-
clusive. Put differently, agents can either specialize, or learn to agree on their de-
cisions. When an agent population favors the former, the vast majority of agents
do not become 100% accurate on the task they specialize. We found that this is
due to the way agents free their memory after its exhaustion. Examining different
agent ontologies showed the following: the closer to the root of an ontology the
irrelevant knowledge is, the more difficult it is to remove it. We refer to this type
of knowledge as parasitic and discuss how to eliminate it in Chapter 6.

5.2.2 From a society’s perspective

Figure 5.3 displays the evolution of the average success rate for different scope sizes
and agent limitations. It shows that the success rate of restricted agents stabilizes,
yet does not converge to 1. This indicates that when the memory of agents is
limited to 4, 8 and 12 classes, their final ontologies do not allow for agreeing on all
decisions. We assume that if restricted enough, an ontology will be able to contain
only the properties required to take the correct decision with respect to a single
task. As a result, it is to be expected that agents interacting over a number of
tasks that requires more memory, will not be able to converge on all decisions. Yet,
the latter is shown to be true even when agents interact over a single task. Due to
the initial ontology induction algorithm, the ontology of an agent that undertakes
the task t may contain properties that do not belong to Pt. At the same time, no
guarantee is offered that the agents will replace these properties with properties
that belong in Pt. Two distinct cases can be envisioned. In the first case, an agent
will gradually discard all properties that are not related to the task it undertakes.
This agent will learn an ontology that will allow for taking correct decisions with
respect to all encountered object types. In the second case, an agent will fail to
discard all the properties that are not related to the task it undertakes. Agents
that fall under the second case will repeatedly replace properties that belong in Pt
with different properties that belong in Pt as well. As a result, these agents are
able to take correct decisions for different subsets of the existing object types at a
given time instance.

Figure 5.4 displays the evolution of the total accumulated points for different
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Figure 5.3 Average success rate for different memory and scope sizes. Different
subplots correspond to different memory sizes (4, 8, 12 and unlimited classes).
Different curves correspond to different scope sizes |scope| = {1, 2, 3}.

scope and memory sizes. It shows that the smaller is the agents scope, the higher is
the number of total points accumulated by their population. Results thus support
the hypothesis 2.

Figure 5.5 portrays the evolution of the decile dispersion ratio (P90/P10) of
these points, for different scope sizes. Results show that for most examined setups
the higher the number of tasks assigned to agents, the less equitable points distri-
bution is. This can be explained as follows. The more agents coordinate over fewer
shared tasks, the more probable it is that their ontologies will share properties as
well. Based on this, these agents will be comparably accurate on these tasks and
agree more often. As a result, these agents will also more often fail or succeed
in pairs, sharing any acquired compensation. Let us consider agents whose scope
consist of a single task. In the examined setup, deciding for this task relies on
2 properties and the agent ontologies are limited to 4 classes. Given their initial
training, these agents may find themselves unable to discard all the properties
that are not related to the tasks within their scope. This is especially true when
these unrelated properties are found closer to their ontology’s root. The more the
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Figure 5.4 Total accumulated points for different memory and scope sizes. Differ-
ent subplots correspond to different memory sizes (4, 8, 12 and unlimited classes).
Different curves correspond to different scope sizes |scope| = {1, 2, 3}.

agents tackle the same task, the more probable it is that the remaining properties
are shared among them. On the contrary, when agents tackle all tasks, the number
of different properties arrangements is higher. As seen in Figure 5.3, this leads to
agents that disagree, even when deciding with respect to a common task. Given
our protocol, this means that even if the taken decision is accurate, the respective
points will not be shared among the two interacting agents.

Closing, it is important to highlight that specializing in fewer tasks was found
to be beneficial only when each task was assigned to an equal number of agents.
When this was not the case, agents collectively specialized in a small subset of
tasks. As a result, these agent populations became highly accurate in these tasks,
but also highly inaccurate in the remaining ones. Whether and how agents can
become equally accurate on all tasks is examined in Chapter 7.
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Figure 5.5 Average points dispersion ratio for different memory and scope sizes.
Different subplots correspond to different memory sizes (4, 8, 12 and unlimited
classes). Different curves correspond to different scope sizes |scope| = {1, 2, 3}.

5.3 Statistical Analysis

Our analysis of variance (one-way ANOVA) shows that the agents scope size, has
a statistically significant impact (p ≤ 0.01) on (1) the success rate, (2) the total
accumulated points and (3) the points distribution. The size of the scope was
not shown to have a statistically significant impact (p > 0.01) on the agents (1)
average accuracy and (2) best task accuracy. This was found to be also true for
agents whose ontologies are limited to 8 and 12 classes. The boxplots 5.6, 5.7, 5.8,
5.9, 5.10 and 5.11 portray how each respective measure varies with the memory
and the scope size of agents. They are grouped by memory and scope size with
different colors corresponding to different memory sizes (4, 8, 12 and unlimited
classes) and bar colors corresponding to different number of tasks.
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Figure 5.6 Success rate.
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Figure 5.8 Maximum accuracy.
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Figure 5.9 Scope accuracy.
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Figure 5.10 Total accumulated points.
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Table 5.2 Summary of p-values from one-way ANOVA for different numbers of
tasks. The table is organized by measure and memory size. It examines the effect
of agents’ scope for a given memory size.

Measure 4 Classes 8 Classes 12 Classes Unlimited Classes

Average accuracy 0.180 0.160 8.23e-06 1.17e-49
Accuracy on best task 0.640 0.090 0.750 1.06e-14
Success rate 2.64e-33 2.91e-25 1.46e-19 5.34e-46
Total compensation 2.56e-15 1.86e-08 2.56e-05 0.004
Compensation P90-10 3.57e-07 2.01e-10 2.16e-20 7.99e-15

5.4 Conclusion
In this chapter, we considered how assigning different tasks to various agents af-
fects both individual agents and agent populations. From an individual agent
perspective, we examined whether focusing on a limited scope of tasks improves
each agent’s accuracy in their best task. Results show that restricting the agents’
memory leads to knowledge specialization, regardless of the size of their scope.
From a population perspective, we explored whether assigning different tasks to
different agents leads to more prosperous and equitable populations. Results show
that by assigning fewer tasks to agents, agent populations not only collectively
accumulate more points but also distribute these points more evenly among their
agents.
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Influence of knowledge forgetting on
long-term correctness

Chapter 5 focuses on how specializing on a limited subset of tasks called scope,
affects the prosperity of individual agents and agent societies. Among others, the
results acquired from it revealed the presence of parasitic knowledge. Can agents
eliminate this parasitic knowledge without sacrificing the benefits of knowledge
specialization? To answer this question, we extend the specialization experiment
by introducing two modifications.

The first modification affects how agents remove knowledge. In Chapter 5,
agents will avoid to remove knowledge if this has a negative impact on their scope
accuracy. However, results acquired and discussed in Chapter 5, show that this
hinders agent specialization. Given the way our agents train and evolve their
ontologies, their knowledge is not necessarily mutually complementary. In other
words, more than one agents may possess the same knowledge. We assume that if
agents do not remove the same knowledge at the same time, even if an agent loses
useful knowledge, this will be eventually relearned from agents who still retain it.
Our main hypothesis is that discarding randomly selected knowledge will allow
for eliminating unrelated properties and relearning useful knowledge will allow
agents to achieve consensus and maximize their maximum accuracy. We expect
this to translate into a higher and more optimized specialization. We implement
this modification by allowing agents to remove randomly selected classes from
their ontologies. Results show that while removing randomly selected knowledge
leads to a short-term accuracy deterioration, it allows agents to eliminate parasitic
knowledge. This practically means that in order for an agent to become highly
accurate on a task, it must temporarily discard accurate and relevant knowledge. It
is important to emphasize the following. The above benefits apply to populations
that specialize on a single task. Otherwise, this knowledge removal mechanism
leads to a gradual degeneration of what agents collectively know for each task.
Therefore, if agents specialize on more than one task, freeing memory using the
generalization mechanism described in Subsection 3.3.4 leads to more accurate



66 Chapter 6. Influence of knowledge forgetting on long-term correctness

agents.
The second modification consists of periodically replacing agents with new,

naive ones. Previous work [11] has shown that when experiments span over sev-
eral generations, agents improve both their average accuracy and communication.
We assume that the introduction of generations will enhance the elimination of
parasitic knowledge.

6.1 Experimental setting

6.1.1 Hypothesis

Agents that free memory by removing randomly selected knowledge, will reach
consensus after a finite number of interactions and maximize their maximum ac-
curacy.

6.1.2 Parameters

The experiment is executed under 12 setups, acquired by varying: (1) the number
of tasks assigned to each agent, (2) the number of agent generations and (3) the
mechanism used for freeing memory. Each setup is run 10 times and its results are
averaged. One run consists of 80000 interactions with each interaction taking place
among two agents. These agents are randomly selected out of a total population
of 36 agents. Depending on the setup, each agent is assigned 1 to 3 tasks and has
an ontology (memory) capable of accommodating a maximum of 8 classes. Each
run spans over either 1 or 4 generations. When a run spans over 4 generations,
one generation occurs every 20000 interactions. When a generation occurs, the 18
longest existing agents are replaced by 18 new agents. When the agents’ memory is
exhausted, they free it either by generalizing their knowledge (Subsection 3.3.4), or
by removing randomly selected classes (Subsection 3.3.4). The agents’ environment
contains 64 different object types, each one perceivable through 6 different binary
properties. The agents are initially trained with respect to all |T | = 3 tasks.
For each task, 4 different decisions exist. Deciding with respect to different tasks
always relies on 2 out of the 6 binary properties. The 3 tasks do not overlap,
thus deciding with respect to each one relies on a different pair of properties. To
induce its initial ontology, each agent takes into account a randomly selected 10%
of all existing labeled examples. As a consequence, there may be overlap between
the training of two agents. The agents subsequently undertake tasks within their
scope. To decide which agent adapts its knowledge in case of disagreement, agents
compare their scores. These are attributed to them by the environment between
two consecutive interactions. They are calculated based on a randomly selected
corpus consisting of 60% of all existing training samples.
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Table 6.1 Summary table of parameters (independent variables)

Parameter Value
Runs 10

Interactions 80000
Generations {1,4}
Agents |A| 36

Replaced agents 18
Memory capacity 8 classes

Memory release technique {Generalization, Random
class removal}

Tasks |T | 3
Assigned tasks (scope) {1,2,3}

Object types |I| 64
Properties 6

Properties per task |Dt| 2
Task overlap 0%

Decisions per task 4
Training ratio 0.1
Score ratio 0.6

6.2 Results and discussion

Here, we present and discuss results acquired by varying how agents remove parts
of their knowledge in response to memory exhaustion.

Figure 6.1 displays the evolution of the average success rate for different scope
sizes, number of generations and knowledge removal mechanisms. It shows two
things. First, generalizing agents do not reach consensus, regardless of whether
the experiment spans over one or several generations. This confirms the results
acquired and discussed in Chapter 5. Second, agents removing randomly selected
knowledge will reach consensus. However, results show that this is only possible
when agents accomplish a single task. Hypothesis is thus partially supported.
Additionally, results show that when the experiment spans over several generations,
the success rate does not increase monotonically. This was found to be true for
both of the examined mechanisms.

Figure 6.2 displays the evolution of agents’ average accuracy for different scope
sizes, number of generations and knowledge removal mechanisms.

Figure 6.3 displays the evolution of best task (maximum) accuracy for different
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Figure 6.1 Average success rate for different memory and scope sizes. Differ-
ent subplots correspond to different combinations of number of generations and
knowledge removal mechanisms. Different curves correspond to different scope
sizes |scope| = {1, 2, 3}.

scope sizes, number of generations and knowledge removal mechanisms.
Concerning agents forgetting randomly selected knowledge, both Figure 6.2

and Figure 6.3 lead to the same conclusion: forgetting randomly selected knowl-
edge is beneficial for agents coordinating over a single shared task and detrimental
to agents coordinating over several tasks. When agents coordinate over a single
task, they achieve the highest possible maximum accuracy by maintaining more
properties required for this task, until the end of the experiment. This is be-
cause the presence of more properties required for accomplishing this task, allows
for higher discrimination among the available decisions and thus better selection.
When agents coordinate over several tasks, forgetting randomly selected knowledge
significantly deteriorates their maximum accuracy. This is because they disagree
more often. Given their ontologies’ limited size, agents are found dropping and
adopting properties that are important for different tasks at each iteration. Given
the pressure on agent agreement, this forces agents’ ontologies to gradually con-
verge on the same properties, until the agents agree on low accuracy knowledge.
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Figure 6.2 Average accuracy by number of generations, knowledge forgetting
mechanism and scope sizes. Different subplots correspond to different combina-
tions of number of generations and knowledge removal mechanisms. Different
curves correspond to different scope sizes |scope| = {1, 2, 3}.

The same tendencies are observed with respect to the agents’ average accuracy.
However, the benefit from randomly forgetting knowledge when coordinating over
a single shared task is limited. This can be explained by the fact that the average
accuracy of single-tasking agents is mainly affected by their maximum accuracy, in
this case their accuracy on the single assigned task. The accuracy of the remaining
tasks remains low in most cases, as the properties present in the agents’ ontologies
do not allow for accurate discrimination.

Concerning agents that forget through generalization, both Figure 6.2 and
Figure 6.3 confirm the results acquired in Chapter 5: the number of tasks each
agent is assigned, has a statistically insignificant effect on the observed maximum
and average accuracy.
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Figure 6.3 Maximum accuracy for different number of generations, forgetting
mechanism and scope sizes. Different subplots correspond to different combina-
tions of number of generations and knowledge removal mechanisms. Different
curves correspond to different scope sizes |scope| = {1, 2, 3}.

6.3 Statistical Analysis

Analysis of variance shows the following three. First, when the knowledge removal
mechanism and scope are fixed, the number of generations is insignificant for the
final success rate, maximum accuracy and scope accuracy values. Second, when
the scope and the generation interval are fixed, the knowledge removal mechanism
is significant for the final success rate values. For the final maximum and scope
accuracy values, the knowledge removal mechanism is significant unless the ex-
periment spans over 4 generations and agents are assigned a single task. Third,
when the knowledge removal mechanism and the generation interval are fixed, the
scope size is significant for the final success rate and scope accuracy values. The
scope size is also significant when the agents remove randomly selected knowledge.
When this is not the case, the scope size is significant only when the experiment
spans over several generations. Figures 6.5, 6.6, 6.7 and 6.8 portray how each
respective measure varies with the number of tasks, the number of generations
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Figure 6.4 Scope accuracy for different number of generations, knowledge forget-
ting mechanism and scope sizes. Different subplots correspond to different com-
binations of number of generations and knowledge removal mechanisms. Different
curves correspond to different scope sizes |scope| = {1, 2, 3}.

and the knowledge removal mechanism. Different colors correspond to different
combinations of knowledge removal mechanisms and number of generations. Bars
of the same color correspond to different numbers of tasks for the same number of
generations and the same knowledge removal mechanism.

6.4 Conclusion
In Chapter 5, the presence of parasitic knowledge was identified. Under the ex-
amined conditions, it prevented agents from acquiring all the knowledge that was
collectively available for a task. As a result agents (1) did not achieve consen-
sus and (2) did not improve their knowledge when narrowing their scope. In this
chapter, we examined how freeing memory through the removal of randomly se-
lected knowledge, reflects on agents’ knowledge and behavior. Our assumption
was that short-term drawbacks, may be out-weighted by long-term benefits. To
that end, the following hypothesis was formulated: Agents removing randomly
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Figure 6.5 Success rate grouped by the number of tackled tasks, number of gen-
erations, and knowledge removal mechanism.
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Figure 6.6 Average accuracy grouped by the number of tackled tasks, number of
generations, and knowledge removal mechanism.



6.4. Conclusion 73

1t 2t 3t 1t 2t 3t 1t 2t 3t 1t 2t 3t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ax

im
um

 a
cc

ur
ac

y

random forgetting - 1 generation
random forgetting - 4 generations

generalization - 1 generation
generalization - 4 generations

Figure 6.7 Maximum accuracy grouped by the number of tackled tasks, number
of generations, and knowledge removal mechanism.
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Figure 6.8 Scope accuracy grouped by the number of tackled tasks, number of
generations, and knowledge removal mechanism.
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Table 6.2 Summary of p-values from one-way ANOVA for full and reduced mod-
els of different parent selection methods. The full model includes all used parent
selection methods (min/max success rate, min/max compensation, random selec-
tion). The reduced model only includes (1) min success rate and (2) random parent
selection. The p-values concern multitasking agents and are organized by measure
and memory size (maximum number of ontology classes). It examines the effect
of different parent selection methods for a given agent memory size.

Measure
Generalization Random Forgetting

1 Gen 4 Gens 1 Gen 4 Gens

Success rate 7.37e-10 1.45e-08 7.65e-10 8.34e-10
Average accuracy 0.0027 0.170 2.65e-06 4.42e-06
Maximum accuracy 0.041 0.005 5.37e-08 5.68e-08
Scope accuracy 3.27e-06 2.45e-10 8.60e-09 6.23e-09

Table 6.3 Summary of p-values from one-way ANOVA analysis for full and re-
duced models of different parent selection methods. The full model includes all
used parent selection methods (min/max success rate, min/max compensation,
random selection). The reduced model only includes (1) min success rate and (2)
random parent selection. The p-values concern multitasking agents and are or-
ganized by measure and memory size (maximum number of ontology classes). It
examines the effect of different parent selection methods for a given agent memory
size.

Measure
1 Task 2 Tasks 3 Tasks

1 Gen 4 Gens 1 Gen 4 Gens 1 Gen 4 Gens

Success rate 2.58e-08 8.45e-05 0.240 0.001 9.54e-05 0.013
Average accuracy 0.065 0.085 0.0006 9.42e-06 4.83e-08 2.26e-07
Maximum accuracy 0.023 0.058 0.0002 9.80e-06 1.18e-07 5.14e-08
Scope accuracy 0.220 0.045 0.001 0.0001 4.83e-08 2.26e-07
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selected knowledge, will reach consensus after a finite number of interactions. Re-
sults support this hypothesis. Agents reach consensus, regardless of the size of
their scope. However, unless each agent tackles a single task, removing randomly
selected ontology classes, significantly degrades its knowledge. Results show that
when agents focus on a single task, temporarily removing relevant and accurate
knowledge allows for more accurate knowledge representations in the long term.
This was found to be true for all knowledge correctness measures and independent
from the number of generations. We can thus conclude that forgetting randomly
selected knowledge may prove beneficial, yet under a very narrow set of conditions.
This suggests that selecting one memory approach from another, should always be
examined in conjunction with task assignment.
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Task exploration in resource-limited agent
populations

We have previously shown that when agents possess limited resources, they spe-
cialize. In chapter 5, we examined the repercussions of this specialization. In
particular, we examined how assigning different tasks to different agents, reflects
on individual agents and agent populations. The tasks examined in chapter 5 are
independent. Accurately deciding for different tasks thus rely on different prop-
erties. Each of these tasks was assigned to an equal number of agents. Results
showed that agent populations equitably explore and become accurate in all ex-
isting tasks. Becoming collectively accurate in all tasks, did not allow these agent
populations for improving their maximum accuracy in the tackled tasks. Yet, it
allowed these agent populations to collectively obtain more income (points) and
distribute it in a more equitable manner to the individual agents.

However, the examined setup is based on an artificially imposed equidistribu-
tion of tasks to the agents. Little is known on whether the observed collective
benefits can be obtained without a priori guaranteeing that each task is constantly
tackled by an equal number of agents. Our assumption is that when two agents
repeatedly disagree, this is because their knowledge is shaped for serving different
purposes, i.e., tasks. Hence, favoring the reproduction of agents that disagree the
most with other agents, should restore and maintain balance in task exploration.
Based on this, the following hypothesis was formulated: ’Favoring the reproduc-
tion of agents with the lowest success rate will allow agent populations to equally
explore all tasks’. We tested this hypothesis by conducting a replacement experi-
ment, i.e., a portion of the agent population is periodically replaced by new, naive
agents.

The replacement takes place in two steps. During the first step, new agents are
introduced. Each new agent is trained by two previously existing agents, hence-
forth called parent 1 and parent 2 respectively. To that end, these parents generate
and provide training examples based on what they know, i.e., their current ontolo-
gies. Those examples follow the same distribution their accuracy follows, over
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all existing tasks. For example, if agent Alice is 100% accurate in hunting but
0% accurate in the remaining tasks, Alice will solely provide examples for hunt-
ing. However, this is an extreme case. In most of the cases, parents will provide
examples for several tasks, tasks for which they are not entirely accurate. As a
result, inaccurate knowledge will be passed from one generation of agents to the
next one. The latter can be seen both as an introduction of noise or variance. It
may allow for agent putting their knowledge under additional scrutiny. Yet, given
these agents’ limited resources, this may also prove detrimental to their knowl-
edge’s overall correctness. Different parent selection criteria have been examined.
According to these, parents may be selected randomly, based on their success rate
and the points they have acquired so far. Acquired points may serve as an indi-
cation of knowledge correctness. During the second step, a predefined number of
agents are removed. Their selection is based on the number of iterations for which
they are present. The number of removed agents equals that of agents added. This
allows for maintaining a population of constant size, avoiding any effect related to
increasing the collective size of a population’s memory resources.

7.1 Experimental setting

7.1.1 Hypothesis

Favoring the reproduction of agents with the lowest success rate will allow agent
populations to equally explore all tasks.

7.1.2 Parameters

The experiment is executed under 20 setups, acquired by varying: (1) the number
of tasks assigned to each agent, (2) the size of their memory and (3) the reproduc-
tion strategy applied at each generation occurrence. Each setup is run 20 times
and its results are averaged. One run consists of 80000 interactions with each in-
teraction taking place among two agents. These agents are randomly selected out
of a total population of 36 agents. Each run spans over 4 generations, each one
taking place every 20000 interactions. When a generation occurs, the 9 longest
existing agents are replaced by 9 new agents. The 9 new agents are trained by
previously existing agents. Choosing which agents will train the new agents relies
on 5 different agent reproduction strategies. These are based on strategies that
favor: (a) agents with the lowest success rate, (b) agents with the highest success
rate, (c) agents with the lowest number of collected points, (d) agents with the
highest number of collected points and (e) the random selection of parents (train-
ing agents). Depending on the setup, each agent is assigned either 1 or 3 tasks and
has an ontology (memory) capable of accommodating a maximum of either 4 or
12 classes. When its memory is exhausted, it frees it by generalizing its knowledge
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(Subsection 3.3.4). The agents’ environment contains 64 different object types,
each one perceivable through 6 different binary properties. The agents are ini-
tially trained with respect to all |T | = 3 tasks. For each task, 4 different decisions
exist. Choosing one decision relies on 2 out of the 6 binary properties. Since the
3 tasks do not overlap, deciding with respect to different tasks relies on a different
pair of properties. To induce its initial ontology, each agent takes into account a
randomly selected 10% of all existing labeled examples. As a consequence, there
may be overlap between the training of two agents. The agents subsequently un-
dertake tasks within their scope. To decide which agent adapts its knowledge in
case of disagreement, agents compare their scores. These are attributed to them by
the environment between two consecutive interactions. They are calculated based
on a randomly selected corpus consisting of 60% of all existing training samples.

Table 7.1 Summary table of parameters (independent variables)

Parameter Value
Runs 20

Interactions 80000
Generations 4
Agents |A| 36

Replaced agents 9
Reproduction strategy {min_points,

max_points, min_srate,
max_srate, random}

Memory capacity {4,12} classes
Memory release technique Generalization

Tasks |T | 3
Assigned tasks (scope) {1,3}

Object types |I| 64
Properties 6

Properties per task |Dt| 2
Task overlap 0%

Decisions per task 4
Training ratio 0.1
Score ratio 0.6
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7.1.3 Measures

Relative standard deviation

Additionally to the measures used in the previous chapters, here we analyze
results using the relative standard deviation (RSD). RSD is a measure used to
quantify the variability of a set of data relative to its mean. Here, RSD is em-
ployed to assess the consistency of accuracy across different tasks performed by a
population of agents. The RSD of an agent population’s accuracy is calculated as
follows. First, the average accuracy for each task across all agents is determined.
Then, the standard deviation of these average accuracies is calculated using the
following formula:

s =

√∑n
i=1(xi − x̄)2

n− 1

Where:

• xi is the average accuracy for task i,

• x̄ is the mean of the average accuracies, and

• n is the total number of tasks.

The RSD is then obtained by dividing this standard deviation by the mean
of the average accuracies and multiplying the result by 100. A higher RSD value
indicates greater variability in the accuracy of the agent population across different
tasks, while a lower value suggests more consistent performance. Put differently,
the higher RSD value is, the more inequitably are tasks explored. The formula for
calculating RSD is as follows:

RSDTAC(s, x̄) =
s

x̄
× 100

We additionally use RSD with respect to how many times each task is per-
formed, when agents do not undertake all tasks (|Scope| < |T |). In this case:

• x′i is the number of times, task i was collectively performed by an agent
population,
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• x̄′ is the mean number of times a task is on average performed.

Based on these adaptations, the standard deviation of games s′ is defined as
follows :

s′ =

√∑n
i=1(x

′
i − x̄′)2

n− 1

Based on s the relative standard deviation of games can be defined as follows:

RSDgames(s
′, x̄′) =

s′

x̄′
× 100

7.2 Results and discussion

Here we present and discuss results acquired by varying (1) which agents are
selected for reproduction and (2) the size of their scope. Each figure consists of 2
subfigures, each one corresponding to a different memory size (4 and 12 classes).
Within such a subfigure, different selection criterion sizes are represented by curves
of different color and pattern.

7.2.1 Multitasking agents

Figure 7.1 displays the evolution of the average accuracy over all tasks (y-axis) as
the number of iterations increases (x-axis), depending on (a) knowledge limit and
(b) parent selection policy. It shows that favoring the reproduction of agents that
are less successful or have accumulated less points, leads to a significantly lower
average accuracy for a given knowledge limit. Whether agent memory is of 4 or 12
classes, there is a statistically significant difference between the random selection
of parents and the selection of the parents that have the lowest success rate.

Figure 7.2 displays the evolution of the average maximum accuracy over all
agents (y-axis) as the number of iterations increases (x-axis), depending on (a)
knowledge limit and (b) parent selection policy. It is shown that favoring the
reproduction of agents that are less successful or have accumulated less points,
leads to a significantly lower average maximum accuracy for a given knowledge
limit. When agent memory holds 4 classes, there is no statistically significant
difference between the random selection of parents and the selection of the parents
that have the lowest success rate. When the agent memories holds 12 classes, there
is a statistically significant difference between the random selection of parents and
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Figure 7.1 Average accuracy of multi-tasking agents for different memory and
parent selection criteria. Different subplots correspond to different memory sizes
(4 and 12 classes). Different curves correspond to different parent selection
criteria (minimum_success_rate, maximum_success_rate, minimum_points,
maximum_points, random_selection).

the selection of parents that have the lowest success rate, i.e., that agree less with
their peers.

Figure 7.3 displays the evolution of the relative standard deviation for the
average accuracy of each task over all agents (y-axis) as the number of iterations
increases (x-axis), depending on (a) knowledge limit and (b) parent selection policy.
The following are shown. First, when the reproduction of successful agents is
favored, the relative standard deviation shows a slow increase. Contrariwise, when
the reproduction of the less successful agents is favored, the standard deviation
reaches a local maximum. It then decreases until it stabilizes. When agent memory
holds 4 classes, there is no statistically significant difference between the random
selection of parents and the selection of the parents that have the lowest success
rate. When the agent memory holds 12 classes, there is a statistically significant
difference between the random selection of parents and the selection of parents
that have the lowest success rate, i.e., agree less with their peers.

7.2.2 Single-tasking agents

Figure 7.4 displays the evolution of the average success rate (y-axis) as the number
of iterations increases (x-axis), depending on (a) knowledge limit and (b) parent
selection policy. Two things are shown. First, that favoring the reproduction of
agents that are less successful or have accumulated less points, leads to a signifi-
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Figure 7.2 Average maximum accuracy of multi-tasking agents for different mem-
ory and parent selection criteria. Different subplots correspond to different memory
sizes (4 and 12 classes). Different curves correspond to different parent selection
criteria (minimum_success_rate, maximum_success_rate, minimum_points,
maximum_points, random_selection).
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Figure 7.3 Accuracy relative standard deviation of multi-tasking agents for dif-
ferent memory and parent selection criteria. Different subplots correspond to
different memory sizes (4 and 12 classes). Different curves correspond to differ-
ent parent selection criteria (minimum_success_rate,maximum_success_rate,
minimum_points, maximum_points, random_selection).
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Figure 7.4 Success rate of single-tasking agents for different memory and par-
ent selection criteria. Different subplots correspond to different memory sizes
(4 and 12 classes). Different curves correspond to different parent selection
criteria (minimum_success_rate, maximum_success_rate, minimum_points,
maximum_points, random_selection).

cantly lower success rate. This is to be expected according to the pressure exerted
during the selection. Second, both subfigures show that the success rate stabilizes,
but does not converge to 1. This indicates that the agents’ final ontologies do not
allow them to agree on all decisions.

Figure 7.5 displays the evolution of the average accuracy over all tasks (y-axis)
as the number of iterations increases (x-axis), depending on (a) knowledge limit
and (b) parent selection policy. It is shown that when agent memory consists
of 12 classes, favoring the reproduction of agents that are less successful or have
accumulated less points, leads to a significantly lower average accuracy for a given
knowledge limit.

Figure 7.6 displays the evolution of the average maximum accuracy over all
agents (y-axis) as the number of iterations increases (x-axis), depending on (a)
knowledge limit and (b) parent selection policy. It is shown that when agent
memory consists of 12 classes, favoring the reproduction of agents that are less
successful or have accumulated less points, leads to a significantly lower average
maximum accuracy for a given knowledge limit.

Figure 7.7 displays the evolution of the relative standard deviation for the
average accuracy of each task over all agents (y-axis) as the number of iterations
increases (x-axis), depending on (a) knowledge limit and (b) parent selection policy.
The following are shown. First, when the reproduction of successful agents is
favored, the relative standard deviation shows a slow increase. Contrariwise, when
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Figure 7.5 Average accuracy of single-tasking agents for different memory and
parent selection criteria. Different subplots correspond to different memory sizes
(4 and 12 classes). Different curves correspond to different parent selection
criteria (minimum_success_rate, maximum_success_rate, minimum_points,
maximum_points, random_selection).
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Figure 7.6 Average maximum accuracy of single-tasking agents for different mem-
ory and parent selection criteria. Different subplots correspond to different memory
sizes (4 and 12 classes). Different curves correspond to different parent selection
criteria (minimum_success_rate, maximum_success_rate, minimum_points,
maximum_points, random_selection).
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Figure 7.7 Accuracy relative standard deviation of single-tasking agents for dif-
ferent memory and parent selection criteria. Different subplots correspond to
different memory sizes (4 and 12 classes). Different curves correspond to differ-
ent parent selection criteria (minimum_success_rate,maximum_success_rate,
minimum_points, maximum_points, random_selection).

the reproduction of the less successful agents is favored, the standard deviation
reaches a local maximum. It then decreases until it stabilizes.

Figure 7.8 displays the evolution of the games relative standard deviation (y-
axis) as the number of iterations increases (x-axis), depending on (a) knowledge
limit and (b) parent selection policy. The following are shown. First, when the
reproduction of less successful agents is favored, after each generation there is a
local low. The latter is not observed when the reproduction of the most successful
agents is favored. In this case, the games relative standard deviation increases
more steeply after each generation. Second, for all (a), (b) and (d), after a finite
number of generations, no low locals are observed. This agrees with the evolution
of the accuracy relative standard deviation. The latter is monotonically increasing
generation after generation for all combinations of the independent variables.

7.3 Statistical Analysis

7.3.1 Multitasking agents

Figures 7.9, 7.10 and 7.11 show the distribution of final observed values for dif-
ferent measures used to evaluate task exploration within agents tackling all (3)
tasks. Each figure categorizes results by agent memory size (4 and 12 classes, indi-
cated by different colors) and parent selection criteria (minimum_success_rate,
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Figure 7.8 Games relative standard deviation of single-tasking agents for dif-
ferent memory and parent selection criteria. Different subplots correspond to
different memory sizes (4 and 12 classes). Different curves correspond to differ-
ent parent selection criteria (minimum_success_rate,maximum_success_rate,
minimum_points, maximum_points, random_selection).

maximum_success_rate,minimum_points,maximum_points, random_selection,
with bars of the same color representing each criterion).

Table 7.2 Summary of p-values from one-way ANOVA for full and reduced models
of different parent selection methods. The full model includes all parent selection
methods (min/max success rate, min/max points, random selection). The reduced
model includes only (1) min success rate and (2) random parent selection. The p-
values concern multitasking agents and are organized by measure and memory size
(maximum number of ontology classes). The table examines the effect of different
parent selection methods for a given agent memory size.

Measure
Reduced Model Full Model

4 Classes 12 Classes 4 Classes 12 Classes

Average accuracy 0.010 7.93e-05 0.0001 6.63e-06
Maximum accuracy 0.087 0.0025 0.0001 6.38e-05
RSDtacc 0.150 0.029 2.89e-05 0.021
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Figure 7.9 Final average accuracy of multi-tasking agents.
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Figure 7.10 Final average maximum accuracy of multi-tasking agents.
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Figure 7.11 Final task accuracy relative standard deviation of single-tasking
agents.

7.3.2 Single-tasking agents

Figures 7.12, 7.13, 7.14, 7.15 and 7.16 show the distribution of final observed val-
ues for different measures used to evaluate task exploration within single-tasking
agents. Each figure groups results by agent memory and parent selection criteria.
Different colors correspond to different memory sizes (4 and 12 classes) and bars of
the same color correspond to different parent selection criteria (minimum_success_rate,
maximum_success_rate,minimum_points,maximum_points, random_selection).

7.4 Conclusion

In Chapter 5 we have established that for specialization to be beneficial for agent
societies, an equitable task allocation must be artificially imposed. Without it,
agent societies become collectively efficient on a small subset of tasks and ineffi-
cient on the remaining ones. In this chapter, task exploration in resource-limited
populations was considered. In particular, we examined whether a population can
equally improve its accuracy in all tasks, without a priori assigning each task to
an equal number of agents. Our hypothesis was that favoring the reproduction
of the agents with lowest success rate, agent populations will equitably explore
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Figure 7.12 Final success rate of single-tasking agents.
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Figure 7.13 Final average accuracy of single-tasking agents.
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Figure 7.14 Final average maximum accuracy of single-tasking agents.
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Figure 7.15 Final accuracy relative standard deviation of single-tasking agents.
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Figure 7.16 Final games relative standard deviation of single-tasking agents.

Table 7.3 Summary of p-values from one-way ANOVA for full and reduced models
of different parent selection methods. The full model includes all used parent
selection methods (min/max success rate, min/max points, random selection).
The reduced model only includes (1) min success rate and (2) random parent
selection. The p-values concern single-tasking agents and are organized by measure
and memory size (maximum number of ontology classes). The table examines the
effect of different parent selection methods for a given agent memory size.

Measure
Reduced Model Full Model

4 Classes 12 Classes 4 Classes 12 Classes

Success rate 0.002 6.15e-06 0.009 2.83e-08
Average accuracy 0.530 0.0001 0.180 1.22e-06
Maximum accuracy 0.420 0.0002 0.010 7.25e-06
RSDtacc 0.020 0.110 0.010 0.170
RSDgames 0.065 0.120 0.130 0.200
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all tasks. This was based on the assumption that an agent with lower success
rate, possesses rare knowledge. As rare, we define knowledge that is suitable for
a task for which, the population’s majority is inefficient. To test this hypothesis,
we varied 2 parameters: (1) the agents’ memory size and (2) the parents selection
criteria. Results reject this hypothesis. They show that agent populations either
collectively specialize on the same task, or degrade their accuracy on the tasks they
previously excelled. This suggests that under the examined minimal assumptions,
agent populations benefit more from a parents selection that is either random, or
based on the highest success rate or points.





8

Conclusion

8.1 Summary

It has been previously shown that agents coordinating over a single task can evolve
knowledge representations [11,12,92]. Our thesis builds upon this, by investigating
how the presence of additional tasks affects this evolution. More particularly, it
investigates how agent societies culturally evolve and specialize knowledge, when
different tasks compete over limited agent resources. Can knowledge regarding
different tasks be equitably distributed within these societies? Put differently,
does the cultural evolution of knowledge guarantee that agent societies equitably
improve their knowledge on all tasks? Equitable improvement of knowledge across
all tasks can be achieved in various ways. On the one end of the spectrum, agents
can build and evolve general-purpose knowledge, i.e., knowledge suitable for un-
dertaking several tasks. On the other end of the spectrum, agents can build and
evolve specialized knowledge, i.e., knowledge suitable for undertaking one task.
To answer this question, an extended version of [61] has been proposed, allowing
for controlling among others: (1) the overlap among different tasks, (2) the num-
ber of tasks assigned to agents, (3) the size of their individual resources and (4)
the reproduction strategies applied from one generation of agents to the next one.
Based on these controlled variables, four experiments were carried out. These
experiments successively investigate: (a) whether knowledge is transferred from
one task to another, (b) how task assignment and resource competition lead to
agent specialization, (c) how random forgetting can benefit single-tasking agents
in the long term, and (d) how different reproduction strategies affect the capac-
ity of agent societies to efficiently tackle all tasks. Through the descriptive and
statistical analysis of their results, the following can be concluded. First, agents
improve their knowledge on one task by undertaking additional tasks. Second,
specialization is not a result of assigning different tasks to different agents, but
rather the result of limited resources. Third, in agent societies where each agent
is assigned one task, agents benefit from removing randomly selected knowledge



96 Chapter 8. Conclusion

when their resources are exhausted. Finally, when agents specializing on different
tasks come in contact, one task will gradually monopolize this society’s memory
resources. Put differently, all agents of this society will gradually specialize on the
same task.

8.2 Contributions

Several contributions in the area of multi-agent systems and cultural knowledge
evolution can be identified. In multi-agent systems, we contribute by proposing
a modular framework allowing among others for: (1) defining different tasks and
control their overlap, (2) assigning agents with one or several tasks, (3) restrict-
ing their resources, (4) defining different ways for handling their exhaustion and
(5) adopting different reproduction strategies. Based on this framework, several
minimal hypotheses were formed. Testing these minimal hypotheses provided a
comprehensive overview of the dynamics that characterize the formation and evo-
lution of specialized knowledge. In cultural knowledge evolution we contribute by
demonstrating that:

1. Resource restricted agents do not necessarily reach consensus.

2. Agents tackling additional semantically overlapping tasks improve the cor-
rectness of their knowledge.

3. The best task accuracy of resource-restricted agents does not depend on the
size of their scope.

4. Populations assigning fewer tasks to individual agents, acquire more com-
pensation and distribute it more equitably to agents.

5. When agents carry out a single task, long-term benefits may arise from the
short-term removal of pertinent knowledge.

6. Favoring the reproduction of agents with marginal knowledge will either
not prevent the collective specialization of a population, or prevent it by
deteriorating the knowledge correctness on the overexplored tasks.

8.3 Perspectives

The presented experiments are based on homogeneous agent populations tack-
ling homogeneous tasks. All agents face the same memory limitations and all
tasks depend on the same number of properties. Additionally, the perception of
the examined agents is always correct. Based on these, three major perspectives



8.3. Perspectives 97

have been identified: (1) the effects of agents properties misperception on knowl-
edge specialization, (2) the effects of agents with different memory limitations on
knowledge specialization, and (3) the effects of tasks relying on unequal number
of properties on task exploration.

So far, our results have demonstrated that knowledge specialization is driven
by the restriction of agent resources, rather than by the disproportionate execu-
tion of specific tasks. Delegating or executing some tasks more often than others
was shown to have no effect on the maximum accuracy achieved by agents. How-
ever, all our experiments were based on the assumption that all object properties
can be accurately perceived by all agents. Do agents specialize when they can-
not accurately perceive all properties, and if so, do they specialize in tasks where
the required object properties can be accurately perceived? Given our extended
framework, it is possible to experiment with agents that make errors when per-
ceiving object properties. These errors can be either constant, meaning an agent
consistently misperceives the same properties, or random, meaning an agent mis-
perceives different properties at different times. Constant errors may refer to sensor
limitations, such as an agent being unable to perceive all shades of green, while
random errors may for example be the result of inadequate attention or eye fa-
tigue. Two outcomes can be foreseen. First, that cultural knowledge evolution
will drive agents to specialize on the tasks for which they make less or no errors
at all. Second, that cultural knowledge evolution will push agents to converge on
inaccurate knowledge. Establishing which of the two outcomes is true, will provide
an insight on how cultural knowledge evolution deals with perception errors.

While our results demonstrated that assigning agents with less tasks did not
enhance their maximum accuracy, they demonstrated that this improves their so-
cieties’ prosperity and equitability. However, all conducted experiments are based
on the assumption that all agents possess equal memory resources. Are specializa-
tion dynamics affected when different agents possess unequal memory resources?
In particular, does this lead to less equitable agent societies, or does the pres-
ence of agents with greater memory resources improve the prosperity of those with
fewer resources? Agents with greater memory resources are able to accumulate
more knowledge. Thus, it is likely that they benefit more from adapting their
knowledge, when interacting with more successful agents. Unless the knowledge of
agents with greater memory resources becomes less specialized than the knowledge
of agents with fewer memory resources, our assumption is that their presence will
deteriorate their society’s equitability. Establishing whether agents with greater
resources specialize or not, will allow us for concluding on the necessity for mech-
anisms to mitigate income inequalities.

Finally, as the results of Chapter 7 show, resource-restricted agent societies
gradually converge on a single task. In other words, the vast majority of their
agents will eventually specialize in the same task. While the effects of agent
selection during reproduction on task exploration has been examined, the acquired
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results were based on the following assumption: deciding with respect to different
tasks, relies on the same number of properties. This means that decision-wise, all
tasks are of equal complexity. As a result, it is unknown whether these results are
valid when agents carry out tasks of different complexity, i.e., carry out tasks that
depend on different number of properties. Does the presence of less complex tasks,
push agent societies to specialize on a higher number of tasks? We assume that
such societies would be more resilient to abrupt condition changes. Among others,
these changes may be: (1) the appearance of new tasks, (2) a change in societies’
needs and (3) an abrupt change in the societies’ populations. Testing whether
cultural knowledge evolution pushes agent societies towards a higher number of
less complex tasks, will allow us to suggest a more efficient task partitioning and
organization.
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Abstract

This thesis explores how the presence of several tasks affects the cultural
evolution of knowledge within agent societies. Previous findings show that
when agents coordinate over a single shared task, this improves their accu-
racy. We build upon these by investigating how coordinating over additional
tasks influences the cultural evolution of knowledge, particularly when the
cognitive resources of agents are limited. Our goal is to determine whether
the cultural evolution of knowledge guarantees: (1) equidistribution of col-
lective resources among different tasks, and (2) improvement of a society’s
knowledge across all tasks. To that end, we propose a framework allowing
for examining what pushes agents to specialize and how this specialization
affects both individual agents and agent societies. Our findings reveal several
key insights: First, agents improve their knowledge on one task by under-
taking additional tasks. Second, while assigning different tasks to different
agents benefits their societies, it is not what triggers agent specialization.
On the contrary, specialization emerges when agents allocate limited cogni-
tive resources to these tasks. Third, while temporarily detrimental to their
knowledge correctness, forgetting randomly selected knowledge brings long-
term benefits when agents are assigned a single task. Lastly, when agents
specializing in different tasks interact, one task will gradually monopolize the
collectively available resources, causing the entire society to specialize in the
same task. These results improve our understanding of how the formation,
evolution, and prevalence of specialized knowledge affect individual agents
and agent societies.

Keywords: Multi-agent simulation; Adaptive multi-agent systems; Cultural evolution



Résumé

Cette thèse explore la manière dont la présence de plusieurs tâches af-
fecte l’évolution culturelle des connaissances au sein des sociétés d’agents.
Des études antérieures ont montré que la coordination des agents autour
d’une même tâche améliore leur précision. Nous nous appuyons sur ces
résultats pour étudier comment la coordination de tâches supplémentaires
influence l’évolution culturelle des connaissances, en particulier lorsque les
ressources cognitives des agents sont limitées. Notre objectif est de déter-
miner si l’évolution culturelle des connaissances garantit : (1) une répar-
tition équitable des ressources collectives entre les différentes tâches et (2)
l’amélioration des connaissances d’une société dans toutes les tâches. À cette
fin, nous proposons un cadre permettant d’examiner ce qui pousse les agents
à se spécialiser et comment cette spécialisation affecte à la fois les agents
individuels et les sociétés d’agents. Nos résultats révèlent plusieurs éléments
clés. Tout d’abord, les agents améliorent leur connaissance d’une tâche en
entreprenant des tâches supplémentaires. Deuxièmement, si l’attribution de
tâches différentes à des agents différents bénéficie à leurs sociétés, elle n’est
pas à l’origine de la spécialisation des agents. À l’inverse, la spécialisation
apparaît lorsque différentes tâches sont en concurrence pour des ressources
cognitives limitées. Troisièmement, bien que temporairement préjudiciable à
l’exactitude de leurs connaissances, l’oubli de connaissances sélectionnées au
hasard présente des avantages à long terme lorsque les agents sont affectés à
une tâche unique. Enfin, lorsque des agents spécialisés dans des tâches dif-
férentes interagissent, une tâche monopolise progressivement les ressources
collectivement disponibles, ce qui amène l’ensemble de la société à se spé-
cialiser dans la même tâche. Ces résultats améliorent notre compréhension de
la manière dont la formation, l’évolution et la prévalence des connaissances
spécialisées affectent les agents individuels et les sociétés d’agents.

Mots clés: Simulation multi-agents; Systèmes multi-agents adaptatifs; Évolution culturelle
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