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Chapter 1

Introduction

1.1 Context

Most of the data exposed on the web is interpretable by humans but not directly by
computers. Let us imagine that you are visiting a page about the painting ’The Weeping
Woman‘. You will probably see a picture that you will interpret as a picture of a painting
that represents a woman. By reading the text around, you will also learn that this is a
painting of Pablo Picasso.

The semantic web is an extension of the web enabling people to express knowledge in
a way that machines can reason with it. If the knowledge about ’The Weeping Woman‘
were expressed with semantic web technologies, an application could have exploited it.
For instance, an application could have deduced that ‘The Weeping Woman’ is a portrait
painting by using previous knowledge and other facts expressed on other pages such as ‘a
portrait painting is a painting depicting (at least) a human’ and ‘a woman is a human’.
Since its proposal in 1998, the semantic web has gained a lot of popularity and it is now
a reality. For instance, if you write the query ‘subject of The Weeping Woman’ in some
well-known search engine, it will retrieve the entity ‘Dora Maar’. And if you ask for the
‘model of Pablo Picasso’, it will find also ‘Dora Maar’ among other entities. These are
possible because this search engine makes use of a large knowledge base that describes
classes (Painting, Artists, etc.), properties (‘has painted’, ‘subject’, etc.), and instances
(‘Dora Maar’, ‘The Weeping Woman’, etc.).

In the semantic web, knowledge is expressed through ontologies. Ontologies are
structures that define formally classes, properties and their relationships. Classes and
properties are usually organized into subsumption hierarchies. For instance, an ontology
can define the class Painter as a subclass of Artist and it can also set the domain of the ‘has
painted’ property to Painter. OWL and RDFS are the two main languages for defining
ontologies. The descriptions of instances are called data and can be formalized thanks to
RDF.

There may be several ontologies about the same field. If one wants to make them
interoperable, the relations between ontologies have to be discovered. This task is called
ontology matching and it results in a set of correspondences asserting the relations
between classes and properties is called an alignment.

For example, consider two organizations, a bookstore and a national library, that
use ontologies represented on Figures 1.1 and 1.2 using a (simplified) Manchester syntax
of OWL2 (Horridge and Patel-Schneider, 2012). Even if the two organisations describe
books, they do not have the same goals and then they do not use the same ontologies.
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Class: Auteur
Class: Editeur
Class: Livre

ObjectProperty: auteur
Domain: Livre
Range: Auteur

ObjectProperty: editeur
Domain: Livre
Range: Editeur

ObjectProperty: sujet
Domain: Livre
Range: owl:Thing

DataProperty: nom
Domain: Auteur or Editeur
Range: xsd:string

DataProperty: prix
Domain: Livre
Range: xsd:decimal

DataProperty: titre
Domain: Livre
Range: xsd:string

Figure 1.1: Bookstore ontology

Class: Artwork
Class: Manifestation
Class: Person

Class: Autobiography
SubClassOf: Biography

Class: Biography
EquivalentTo:

Book and (focus some Person)

Class: Book
SubClassOf: Artwork

Class: Painter
EquivalentTo:

inverse (contributor) some Painting

Class: Painting
SubClassOf: Artwork

Class: PortaitPainting
EquivalentTo:

Painting and (depicts only Person)

ObjectProperty: contributor

Domain: Artwork
Range: Person

ObjectProperty: depicts
SubPropertyOf: focus
Domain: Painting

ObjectProperty: focus
Domain: Artwork
Range: owl:Thing

ObjectProperty: hasManifestation
Domain: Artwork
Range: Manifestation

DataProperty: birthdate
Domain: Person

DataProperty: birthplace
Domain: Person

DataProperty: name
Domain: Person

DataProperty: title
Domain: Artwork

Figure 1.2: National library ontology
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owl:Thing Pablo Picasso

Livre auteur551 L’enterrement du comte d’Orgaz

item5116

a auteur titre

a nom

Figure 1.3: Bookstore instances

To get a better presentation of his catalogue, the book seller may want to exploit the
ontology provided by the national library. To that extent, the seller ontology and the
national library ontology have to be aligned. An alignment between these ontologies
would contain:

• ‘sujet’ is more specific than ‘focus’

• ‘auteur’ is more specific than ‘contributor’

• ‘Livre’ is a subclass of ‘Book’

Thanks to this alignment, the bookstore can refine his topics and better structure his
catalogue For instance, using the alignment and the national library ontology, it could be
inferred that a ‘Livre’ having a ‘Person’ as one of its ‘sujet’ is a biography. When ontologies
are aligned, knowledge expressed on both sides can interoperate and be consolidated.
However, it may happen that ontologies are not aligned or that the relations between
them are too vague to be useful.

Similarly, instances may be represented by various organisations in different way. It
is thus necessary to identify the same instances between different knowledge bases and
publish theses links. This task is called Data interlinking and can be thought of as
complementary to ontology matching. For instance, Figures 1.3 and 1.4 show data de-
scribed with respectively the bookstore and the national library ontologies. Let us imagine
that the bookseller wants to retrieve books (instance of class ‘Livre’) written by a painter.
Since the bookstore does not have any class ‘Painter’, using only the alignment between
the bookstore and the national library ontologies is not sufficient to select such books. If
one can identify that the instance ‘auteur551’ of the bookstore is the same as the instance
‘Picasso’ of the national library, then it become possible to infer than ‘item5116’ is a book
written by a painter. This entailment does not only use ontologies but also alignments
and links between the bookstore and the national library.

It first shows, on a single example, the intricacies of exploiting heterogeneous knowledge
and the complementary role played by ontology, data, alignments and links. Then our
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Person

Painting Picasso DoraMaar The Weeping Woman

WeepingWoman

a contributor depicts title

a a

Figure 1.4: National library instances

objective is not to reduce the diversity of knowledge but to understand heterogeneity in
order to benefit from it.

1.2 Problems and approaches

Ontology matching and data interlinking are cornerstones of semantic web technolo-
gies. They enable knowledge to be shared, consolidated and reused across organizations.
Many methods for ontology matching and data interlinking have been proposed. But no
solution solves theses problems in all scenarii. In fact, they are not easy tasks because
ontologies may vary both in term of granularity, semantics and natural language used in
annotations.

Ontology matching and data interlinking rely on tools able to automatically discover
correspondences between concepts (classes and properties) and links between instances.
Their general underlying principle is to compare entities (classes, properties, instances)
and to decide the relations that hold between them, if any. Relations between classes
and properties can be equivalence, subsumption, overlapping or disjointness. Between
instances, we will concentrate only on the equality relation expressed through the OWL
constructor owl:sameAs.

In my work since my PhD (2007), I addressed the problems of comparing and measuring
distances between representations of knowledge. One can distinguish between tree levels
of representation: (1) ontologies, (2) alignments and (3) instances.

Ontologies. A first problem is to measure the proximity between ontologies. Since
there are different scenarii that need to establish proximity between ontologies, a single
measure will not cover all the requirements. For instance, if one wants to complete her
ontology, she will search for other ontologies that share some concepts with it but that have
not necessarily the same axioms. Meanwhile, if the objective is to exchange data between
applications, the more axioms are shared by the ontologies, the easier the exchange will
be. One of the difficulties resides in providing several operational and relevant definitions
of proximities.

Two approaches for measuring proximities could be considered: relying only on the
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content of ontologies (ontology space) or using alignments as support of the similarity
(alignment space). For the search use case, measures defined on the ontology space are
suitable because they do not require an alignment to be available. In some other appli-
cations, the similarity has to be driven by the alignments. For instance, if one wants to
quantify the coverage of query mediation between ontologies, then the coverage will depend
on the alignments used by the application. In this scenario, a proximity measure should
reflect the overlaps between ontologies given by the alignment. Designing alignment-space
similarity measures requires to deal with the whole network of alignments. In particular,
the relation between two concepts is not necessarily directly asserted but can be deduced
considering several paths of correspondences and relations within ontologies.

Alignments. A second challenge is the evaluation of the quality of alignments between
ontologies. The classical way to assess the quality of an alignment consists in comparing it
with a reference alignment. This is usually performed by representing alignments as simple
sets of correspondences and by comparing these sets using the precision and recall mea-
sures. This basic approach neither considers the semantics of ontologies and alignments
nor the proximity between correspondences. In fact, two alignments that are syntactically
different, i.e. do not share any correspondence, could be semantically equivalent. Further-
more, if we take the semantics into account we have to relax the all-or-nothing nature of
logical entailment: It is not because two alignments are not semantically equivalent that
they are not close. This is thus a difficult task to redefine precision and recall measures in
order to both consider semantics and proximity. The approach that I followed has been
to study the properties that precision and recall have to satisfy in order to respectively
measure the correctness and completeness of alignments.

When no reference alignment is available, assessing the quality of an alignment is
even more difficult. There are several options for approximating this through satisfying
specific properties: consistency, conservativity, locality (Solimando, Jiménez-Ruiz, and
Guerrini, 2014; Solimando, Jiménez-Ruiz, and Guerrini, 2017). As mentioned previously,
correctness and completeness are two meaningful indicators of quality (Meilicke, 2011).
Correctness can be guessed using consistency or satisfiability checking. Completeness is
more difficult to measure when the complete alignment is not known. In both cases, several
semantics, RDFS and OWL, have to be addressed. Our approach assesses the correctness
and completeness of alignment by measuring how axioms or relations between concepts of
one ontology can be translated into the second one modulo alignments.

Instances. The last part of my work tackles the challenge of identifying resources
from different RDF datasets that represent the same entity. In fact the same entity
can be described differently in RDF datasets because they may use different ontologies.
Many works have investigated the use of similarities for comparing instances from different
datasets (Nikolov, Ferrara, et al., 2011; Nentwig, Hartung, Ngonga Ngomo, et al., 2017a).
Identifying resources can also take advantage of keys and alignments. A key is a set
of properties that characterize uniquely all instances of a given class. For instance, if a
key holds for a data set and if this key can be translated to a second dataset using an
alignment between the ontologies of the two data sets, then this key can be used as a
rule for identifying the same instances across these data sets. However, keys are rarely
asserted at ontology level and we have also shown (Atencia, Chein, et al., 2014) that
other definitions of a key than those of the owl:hasKey construct can be useful for data
interlinking. We have first addressed the problem of inducing keys from data. Discovering
keys from data has been solved for tables from the relational database model, but in the
case of RDF we have to deal with the non functionality of properties.
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Link discovery can be addressed by combining both keys and alignments. However,
alignments are not necessarily available or there may be no pair of aligned keys. My
approach is to relax the key condition to be valid only on the intersection of the data sets.
We have followed this idea to develop the notion of link key as a generalization of a pair
of keys related by an alignment. In particular, we have tackled the discovery of such link
key patterns from data. The discovery method only requires as input the two datasets,
i.e. without alignments. However the possible number of sets of pairs of properties to
consider is exponential. Furthermore, we have to be able to select only relevant ones. As
a consequence, we have focused on developing techniques to reduce the search space and
also measures to assess a priori the quality of extracted link key patterns.

1.3 Contributions

In order to deal with heterogeneity, I have studied and contributed to techniques and
measures for comparing knowledge structures on the semantic web. We are interested
in three kinds of knowledge structures: ontologies, alignments and instances. The main
originality of my work is to always focus on taking advantage of the semantics of knowledge
structures.

Ontologies. For comparing ontologies, we have investigated two families of measures:
ontology space and alignment space measures. The first family of measures only relies on
the content of the ontologies whilst alignment space measures take advantage of existing
alignments between ontologies.

We have provided and compared several ontology space similarity measures (David and
Euzenat, 2008b). Our proposed measures mainly differ on the deepness of the information
they take into account. The lightest measures only rely on text annotation of concepts,
while the deepest ones compare the triples shared by ontologies.

We have also developed totally new alignment space measures and we have studied
them experimentally (David, Euzenat, and Sváb-Zamazal, 2010). More precisely, we have
proposed path-based measures which only consider the existence of paths of alignments be-
tween ontologies in a network and coverage based-measure which evaluates the proportion
of entities that are covered by paths of alignments.

Alignments. We have contributed to the evaluation of alignments by investigating two
approaches to evaluate the semantic quality of alignments with a reference one or without
a reference. For the first approach, we have studied how to combine both semantics and
proximity of correspondences. Our contribution has been to provide a framework that
generalizes both semantic (Euzenat, 2007; David and Euzenat, 2008b) and relaxed (Ehrig
and Euzenat, 2005) alignment evaluation measures.

A second approach consists in evaluating the quality of alignment without a reference
one. We have investigated both syntactic and semantic translations by generalizing agree-
ment and disagreement measures (d’Aquin, 2009). Since such alignment quality measures
are usable in any non-controlled evaluation contexts, they can be very useful in practice.

Instances. We have proposed symbolic approaches to perform data-interlinking by
developing an algorithm to extract pseudo-keys from RDF data (Atencia, David, and
Scharffe, 2012) and also by introducing the notion of a link key (Atencia, David, and
Euzenat, 2014a). We have addressed the discovery of RDF pseudo-keys by extending a
method for extracting functional dependencies from relational databases. We have pro-
vided definitions of keys and pseudo-keys for RDF and developed an efficient algorithm
for extracting them. Keys can not only be used for interlinking data but also for cleaning
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data. In fact, it happens that counter-examples of a pseudo-key are often duplicates within
the data set.

Regarding link keys, we have designed an algorithm that exploits both the notion of
candidate link key and indexing techniques. We have developed measures for assessing the
quality of extracted candidates and have shown that this approach gives good results in
practice. We have formalized the extraction problem with formal concept analysis (FCA)
and extended it to interdependent link key extraction using relational concept analysis
(RCA) (Atencia, David, Euzenat, et al., 2020). Finally, we have theoretically compared
the different semantics of keys and link keys (Atencia, David, and Euzenat, 2021). This
work demonstrates that link keys are more general than a pair of keys whose properties
are related by alignments.

Moreover, all these contributions have been implemented in open source software and
libraries, some of which have been widely used.

1.4 Editorial choice and manuscript structure

The goal of this document is to put my work in perspective. Rather than a historical
perspective, I chose to organise it as a structured synthesis, highlighting the relations and
the lines of forces of my work. I have done my best to minimize the formalisms used in
this manuscript and have tried to use examples to illustrate important notions.

As stated previously, I have addressed three kinds of knowledge structures: ontologies,
alignments and instances. The structure of this document follows this segmentation.

Chapter 2 is dedicated to ontology measures. Section 2.3 gives an overview of ontol-
ogy space measures that take as input only the ontologies without using alignments. In
Section 2.4, we present alignment space measures, and in particular measures based on the
existence of correspondences between ontologies and measures that quantify the coverage
of entities through alignments.

Chapter 3 concerns alignment evaluation measures. We make the distinction between
extrinsic and intrinsic quality measures. Extrinsic evaluation uses external information
such as a reference alignment, while intrinsic evaluation relies solely on the alignment and
content of ontologies. In Section 3.2 about extrinsic evaluation, we present and discuss
our generalisation of semantic and relaxed precision and recall. For intrinsic measures,
we propose, in Section 3.3, inclusion and exclusion measures generalizing agreement and
disagreement.

Chapter 4 deals with the data-interlinking problem. Section 4.2 presents an algorithm
for extracting pseudo-keys, i.e. keys allowing few exceptions, from RDF datasets. It shows
that it is useful for data-interlinking but also for cleaning data, i.e. identifying duplicates.
In Section 4.3, we extend the notion of keys to link keys. In particular, we give an
overview of algorithms for extracting link key candidates and evaluation measures that we
have developed.

We conclude by providing perspectives of this work. So far, we have worked on static
knowledge and we have provided methods and tools for reconciliating it. Knowledge and
data may and have to evolve. In this context, we will study how a network of aligned
ontologies and linked data have to adapt to changes.
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1.5 Origin of materials

This manuscript is mainly based on works presented in the following papers. Since I have
chosen to present a synthetic view of my work, these papers may provide more precise and
technical details.

Chapter 2 is based on two papers, the first presents measures in the ontology space,
and the second those in the alignment space:

• Jérôme David and Jérôme Euzenat (2008a). “Comparison between ontology dis-
tances (preliminary results)”. In: Proc. 7th international semantic web conference
(ISWC), Karlsruhe (DE). vol. 5318. Lecture notes in computer science, pp. 245–260.
url: https://exmo.inria.fr/files/publications/david2008a.pdf

• Jérôme David, Jérôme Euzenat, and Ondrej Sváb-Zamazal (2010). “Ontology sim-
ilarity in the alignment space”. en. In: Proc. 9th international semantic web con-
ference (ISWC), Shanghai (CN), pp. 129–144. url: https://exmo.inria.fr/
files/publications/david2010b.pdf

Chapter 3 presents work that not been published yet but that is an extension of the
following paper:

• Jérôme David and Jérôme Euzenat (2008b). “On fixing semantic alignment evalu-
ation measures”. en. In: Proc. 3rd ISWC workshop on ontology matching (OM),
Karlsruhe (DE). ed. by Pavel Shvaiko et al., pp. 25–36. url: https://exmo.
inria.fr/files/publications/david2008b.pdf

Chapter 4 summarizes results on data-interlinking published in several conference and
journals. The first paper addresses pseudo key discovery, and the second the link key
discovery. The third paper presents the interdependent link key extraction through Re-
lational Concept Analysis (RCA). The forth one study composition of link keys. Finally
the last one formalizes the different semantics of link keys and compare them with key.

• Manuel Atencia, Jérôme David, and François Scharffe (2012). “Keys and pseudo-
keys detection for web datasets cleansing and interlinking”. en. In: Proc. 18th inter-
national conference on knowledge engineering and knowledge management (EKAW),
Galway (IE), pp. 144–153. url: https://exmo.inria.fr/files/publications/
atencia2012b.pdf

• Manuel Atencia, Jérôme David, and Jérôme Euzenat (2014a). “Data interlinking
through robust linkkey extraction”. en. In: Proc. 21st european conference on
artificial intelligence (ECAI), Praha (CZ). ed. by Torsten Schaub et al. Amster-
dam (NL): IOS press, pp. 15–20. url: https://exmo.inria.fr/files/
publications/atencia2014b.pdf

• Manuel Atencia, Jérôme David, Jérôme Euzenat, et al. (2020). “Link key candi-
date extraction with relational concept analysis”. en. In: Discrete applied math-
ematics 273, pp. 2–20. url: https://moex.inria.fr/files/papers/
atencia2019z.pdf

• Manuel Atencia, Jérôme David, and Jérôme Euzenat (2019). “Several link keys
are better than one, or extracting disjunctions of link key candidates”. en. In:

https://exmo.inria.fr/files/publications/david2008a.pdf
https://exmo.inria.fr/files/publications/david2010b.pdf
https://exmo.inria.fr/files/publications/david2010b.pdf
https://exmo.inria.fr/files/publications/david2008b.pdf
https://exmo.inria.fr/files/publications/david2008b.pdf
https://exmo.inria.fr/files/publications/atencia2012b.pdf
https://exmo.inria.fr/files/publications/atencia2012b.pdf
https://exmo.inria.fr/files/publications/atencia2014b.pdf
https://exmo.inria.fr/files/publications/atencia2014b.pdf
https://moex.inria.fr/files/papers/atencia2019z.pdf
https://moex.inria.fr/files/papers/atencia2019z.pdf
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Proc. 10th ACM international conference on knowledge capture (K-Cap), Marina
del Rey (CA US), pp. 61–68. url: https://moex.inria.fr/files/papers/
atencia2019c.pdf

• Manuel Atencia, Jérôme David, and Jérôme Euzenat (2021). “On the relation be-
tween keys and link keys for data interlinking”. en. In: Semantic web journal 12.4,
pp. 547–567. url: https://content.iospress.com/articles/semantic-
web/sw200414

https://moex.inria.fr/files/papers/atencia2019c.pdf
https://moex.inria.fr/files/papers/atencia2019c.pdf
https://content.iospress.com/articles/semantic-web/sw200414
https://content.iospress.com/articles/semantic-web/sw200414
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Chapter 2

Ontology Measures

We are interested in providing measures of proximity between ontologies. To do this, we
need to define functions that take two ontologies as input and return a number quantifying
the similarity or dissimilarity of the two ontologies. At first glance, this seems simple, but
they are many dimensions and constraints to consider.

There could be many different scenarii where there is a need for evaluating proximity
between ontologies. For instance, one could think to the knowledge engineer verifying if
the ontology she is developing will easily interoperate with other ontologies on the same
domain. In this case, an ontology measure taking advantage of the structure and the
semantics is suitable. Another use case, is the librarian who indexes books with thesauri.
He could be interested to enrich the indexation by using other theasauri on the same
domain. In this scenario, the structure of related thesauri does not matter but they have
to share similar terms in their annotations. We could also imagine a company that does
not want to disclose the core of its ontology. However, in order to exchange with customers
and suppliers, the company exposes a minimal interface of its ontology with alignments
between some shared domains ontologies. Somebody willing to know if his ontology is
close or not of those of the company can only rely on alignments without having access to
the content of the targeted ontology.

As we can see, the target application plays a primary role in the design of a measure
because each application has his own constraints and uses different level of representation.
We addressed the problem of measuring proximity between ontologies following this idea
that there is not a single perfect measure but several ones that ground on different aspects
of ontologies such as the textual content, the structure or the semantics. We investigated
separately measures in the ontology space relying only the ontology content and those in
the alignment space that take advantage of alignments between ontologies. In both cases,
we have identified several ways to compare ontologies and designed different measures.

2.1 Related work

There are a lot of different works related to similarities and ontologies. Many similarities
have been developed assessing the relatedness of concepts within an ontology (Pirrò, 2019)
or for matching ontologies (Euzenat and Shvaiko, 2013). These are different approaches
as the former is defined on a single ontology, while the latter applies to several ontologies.

The first family of ontology measures, usually named ”semantic similarities“, takes
advantage of the ontology in order to quantify how concepts are similar. A measure can
be structural in the sense that it depends directly on the length of the paths connecting

11
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the concepts of the ontology. Measures based on information theory, which consists in
quantifying the amount of information that two concepts have in common, have also been
proposed. Some of them use corpus-based concept probabilities (Resnik, 1995), others
estimate the amount of information from the subsumption hierarchy (Seco et al., 2004;
Pirrò and Euzenat, 2010).

The second family of ontology measures, such as those of (Mädche and Staab, 2002),
(Hu et al., 2006) and (Vrandečić and Sure, 2007), widely used in ontology matching is
in reality concerned with concept distances across ontologies. (Mädche and Staab, 2002)
introduced a concept similarity based on terminological and structural aspects of ontolo-
gies. This very precise proposal combines an edit distance on strings and a structural
distance on hierarchies (the cotopic distance). This ontology similarity strongly relies on
the terminological similarity. OLA (Euzenat and Valtchev, 2004) uses a concept similarity
for ontology matching. This measure takes advantage of most of the ontological aspects
(labels, structure, extension) and selects the maximum similarity. It is thus a good can-
didate for ontology similarity. The framework presented in (Ehrig, Haase, et al., 2005)
provides a similarity combining string similarity, concept similarity – considered as sets –
and similarity across usage traces.

There is also a quite elaborate framework in (Hu et al., 2006). This paper is mostly
dedicated to the comparison of concepts but can be extended to ontologies. First, con-
cepts are expanded so that each concept is expressed as a disjunction of compound but
conjunctive primitive concepts. This works as long as no cycle occurs in the ontology.
Then primitive concepts are considered as dimensions in a vector space and each con-
cept is represented in this space. The weights used in this vector space are computed
with TF·IDF. The distance between two concepts is the smallest cosine distance between
vectors associated with disjuncts describing concepts.

Finally, (Vrandečić and Sure, 2007) more directly considered metrics evaluating ontol-
ogy quality. This is nevertheless one step towards semantic measures since they introduce
normal forms for ontologies which could be used for developing syntactically neutral mea-
sures.

These works generally rely on elaborate distance or similarity measures between con-
cepts. Their extension to distances between ontologies is never discussed, although there
are many ways to do so.

The works cited above consider only measures defined on the ontology content. How-
ever, one could assume that ontologies are already aligned, and take advantage of these
networks of aligned ontologies in order to define measures. A first step toward alignment
space measure as been proposed by (d’Aquin, 2009). This paper investigated ontology
agreement which is used as a measure for choosing compatible ontologies. It can be seen
as another kind of distance or similarity between ontologies. However, the way agreemen-
t/disagreement is computed in the cited paper is still mainly based on ontology content
and alignments are only used for identifying equivalent entities which are not immediately
comparable.

In Section 3.3, we specifically adapt and generalize these two measures in the context
of ontology alignment evaluation.
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2.2 Terminology

Ontologies

In the semantic web, the word ”ontology“ refers to different structures according to the
context. It can be simple SKOS thesaurus (Miles and Bechhofer, 2009), RDFS vocabularies
(Brickley and Guha, 2014) or expressive OWL ontologies (Group, 2012).

To simplify, we use here a simple but generic definition of an ontology. It can be of
course refined according to the context, but this definition is sufficient to understand the
idea of the proposed measures.

Definition 1 (Simple ontology). An ontology is defined as a tuple O = ⟨E, T , L⟩ where

• E is the set of entity names (IRIs) defined in the ontology. It encompasses classes,
properties, and individuals.

• T is the set of logical axioms (A-Box and T-Box) of the ontology.

• L is the set of annotation axioms.

Considering the representation model T can be either a set of RDF triples or a
set of OWL axioms. Annotations L can be human-readable text annotations such as
rdfs:label, rdfs:comment and skos:prefLabel, but also other kind of annotations
such as rdfs:seeAlso or owl:deprecated. To simplify, we will consider that L contains
only text annotations. The semantics of ontologies can be characterised by entailment,
denoted |=, which enables to define the closure of an ontology Cn(O) = {δ; O |= δ}.

This way of defining an ontology makes it possible to highlight different levels on which
similarity measures can be based.

An ontology space is characterized by a set of ontologies.

Alignments

Alignments express correspondences between entities belonging to different ontologies.
Here we will only use a simplified version of alignments; a more complete definition and
discussion can be found in (Euzenat and Shvaiko, 2007).

Definition 2 (Simple alignment). Given two ontologies o and o′, with their associated set
of entities E and E′ , an alignment is a set of correspondences ⟨e, e′, r⟩, such as:

• e ∈ E and e′ ∈ E′ are entities issued from the ontologies;
• r ∈ R is the relation that holds between e and e′

A correspondence ⟨e, e′, r⟩ asserts that the relation r holds between the ontology entities
e and e′. In most of the cases, the set of relations R is equivalence (=) and subsumption
(⊑, ⊒), but one could also relies on algebras of alignment relations (Inants, 2016).

We call alignment space a set of ontologies related by alignments between them. It
can be seen as a multi graph where vertices are ontologies and edges are alignments. In
alignment spaces, pairs of ontologies are not necessarily directly aligned. However, if there
is a path between two ontologies in the space, then an alignment can be computed by
composing alignments from the path.
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Dissimilarity, similarity and distance

Ontology measures can be dissimilarities, similarities or distances, and they differ accord-
ing to their properties. In this context of this work, all measures are functions defined on
a given ontology-space or alignment-space. These functions take as input two ontologies
and return a non-negative real number.

A dissimilarity is a symmetric function which is minimal, i.e. equals to 0, when applied
to the same ontology. A distance is a dissimilarity which also satisfies the triangular
inequality and is equal to 0 only if the ontologies are the same.

The similarity is a dual operation of dissimilarity : it is as large as the ontologies are
similar. In our work, we mainly consider normalized similarities that are maximal and
equal to 1 when applied to same ontology.

2.3 Ontology-space measures

When only ontologies are available without alignment between them, a similarity measure
can be based on the ontology content. In the following, we call a set of ontologies without
alignment, an ontology space. This section presents a summary of the ontology space
measures that we have proposed and compared.

Because there are different requirements for evaluating proximity between ontologies,
measures can rely on different levels of the ontology content. A first dimension is the type
of content on which the measure is defined:

• a text-based measure relies on the annotations axioms.

• a structural measure will consider logical axioms as a graph.

• a semantic measure take the semantics of the ontology language into account.

This first category is not disjoint from the structural and semantic categories and a measure
can be mixed with both approaches.

A second dimension is the granularity of the measure: we make the distinction between
global measures that consider ontology as a whole single structure from concept-based
measures that compare each pair of concepts separately and then aggregate the results
into one single value.

We saw that most of the work dealing with measures between ontologies comes from
ontology matching and these measures are in fact defined between concepts from different
ontologies. Such concept-based measures consist in computing a value between concepts
and then aggregate all theses values. As a second category we consider global measures
that do not compare concepts separately but the whole set of annotations and/or axioms
as a single structure.

Finally, we could differentiate intrinsic measures only relying on the ontological content
from extrinsic measures that make use of external sources of information or knowledge.
External resources can be lexical databases such as WordNet (Miller, 1995) or word-
embedding models, but also aligned ontologies (Locoro et al., 2014). Except for the last
one, for which we have proposed and studied several measures (see Section 2.4), we did
not specifically studied such extrinsic measures.

In (David and Euzenat, 2008a), we proposed and compared several global and concept-
based measures. These measures are discussed in the following sections and a classification



2.3. ONTOLOGY-SPACE MEASURES 15

Measures Type of content Granularity
Text-based Structural Semantic Global Concept-based

CosineVM x x
JaccardVM x x

Lexical x x
Triple-based x x x

Table 2.1: Classification of proposed measures regarding their type of content they rely
on and their granularity.

of them according to the type of content used by measures and their granularity is given
Figure 2.1.

Global text-based measures

A similarity or dissimilarity can be computed by comparing the sets of labels appearing in
both ontologies and using a measure such as the Hamming distance, i.e., the complement
to 1 of the ratio of common terms over the whole set of terms used by any of the ontologies.
This distance would certainly run faster than any serious matching algorithm but does
not tell a lot about the matching process.

However, more elaborate measures based on the vector space model (VSM) have been
designed. The approach consists in representing an ontology as a bag of terms extracted
from the annotations and making use of classical information retrieval metrics in the vector
space model. In particular we have compared a baseline measure based on the number of
term in common (Jaccard index on boolean model) with the classical cosine index with
TF·IDF weights.

Concept-based measures

Another approach represents an ontology as a set of concepts. These concepts will depend
on the techniques used for establishing the distance: they will generally be the classes or
properties to be found within the ontologies. In this case, defining a distance between the
ontologies often relies on:

• a distance (δ) or similarity (σ) measure between concepts;
• a collection distance (∆) which uses the distance between concepts for computing a

distance between ontologies.

In our work (David and Euzenat, 2008a), we have designed two new concept-based
measures and analysed their associations with several collection measures independently.
The first one only relies on lexical information from annotations. It represents each entity
by a set of string values. Then the similarity is computed from the map that maximizes
the Jaro-Winkler similarity between the two sets of string values.

The second measure mixes both textual and structural informations. It relies on a
representation of input ontologies as RDF graphs and is defined between RDF nodes. The
idea is that the similarity between two nodes depends on how similar the nodes appearing
in their respective neighbourhood are. Initially, the similarity of literal nodes is given by
a syntactic measure and those of nodes having the same URI is set to one. Then the
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similarity between other nodes is iteratively updated using the values computed at the
previous iteration.

Once one has a similarity (or dissimilarity) among concepts available, there are different
choices for extending measures at the concept level to the ontology level. This is achieved
with the help of a collection measure which computes the ontology measure value from
the concept measure values.

As collection measures, we have considered the average linkage, the Hausdorff dis-
tance and a minimum weight maximum graph matching distance. The problem with the
Hausdorff distance and linkage measures, is that its value is only function of the distance
between one pair of members of the sets. The average linkage, on the other hand, is
function of the distance between all the possible comparisons. None of these are satisfac-
tory. Matching-based dissimilarities (Valtchev, 1999) measure the dissimilarity between
two ontologies by taking into account an alignment (matching) between these two on-
tologies. It can be defined independently of any alignment by using the minimum weight
maximum matching. This last measure considers the problem of distance between sets of
entities as an assignment problem. In particular, this measure consists in computing a
(injective) mapping between two sets of concepts that minimizes the distance (or maxi-
mizes the similarity) and then makes an average of individual values of this mapping. The
implementation relies on the Hungarian algorithm (Kuhn, 1955).

Evaluation and results

At the time of such work, measures had, to the best of our knowledge, not been evaluated
as ontology distances. We had emitted opinion on their relevance only grounded on their
mathematical form. It was necessary to enhance this judgement through evaluation. We
have evaluated both the speed of distance computation and the accuracy with regard to
asserted similarity.

An ideal experimental setting comprises a corpus of ontologies with clear expectations
about the distances that should be found between them. We do not have such a corpus
annotated with distances values between ontologies. However, the most important thing
is to know the proximity order between ontologies.

Finding a relevant corpus was not an easy task. We have chosen the OAEI benchmark
suite because it offers a collection of ontologies systematically altered from one particular
ontology. From this test set, we have been able to build a reference partial order between
the ontologies. The experiments have consisted in comparing the partial order given by
measures to the reference one obtained from alterations.

Results showed that the triple-based similarity performed the best. Surprisingly, all
global lexical measures were performing better than the concept-based lexical measures.
The cosine measure combined with TF weights obtained very good results close to those
of the triple-based similarity.

In term of runtime, as expected, global measures were faster than concept-based mea-
sures: they were 5 times faster to compute than the lexical concept-based measure and 80
times faster than the triple-based similarity (David and Euzenat, 2008a).

Extensions of this work

We have not pursued directly this work on ontology space distances. However, the lesson
that we learned from designing measures and experimental results have been useful for
other works. For instance, in the T. Lesnikova’s PhD thesis (Lesnikova, 2016), we have
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investigated measures in the context of cross-lingual data-interlinking. The challenge
was to design fast, scalable and accurate lexical measures for comparing instances whose
annotations were expressed in different natural language. Starting for the observations
that both triple-based similarity and global measures based on VSM and cosine distance
were accurate, we have combined both. Then, an instance is represented as a collection of
tokens extracted from annotations coming from the instance itself but also from entities
that are closely related in the graph.

2.4 Alignment-space measures

So far we have discussed ontology-space distances defined only on the content of ontologies.
However, one could take advantage of the context around ontologies. In this section,
we are interested in comparing ontologies using alignments expressing relations between
concepts in these ontologies (Euzenat and Shvaiko, 2007). More specifically, a distance or
similarity measure is alignment-based if it is computed without relying on the content of
ontologies, but only on that of the alignments. So, such a measure can only be applied
when alignments are available, we assume that the semantic web contains many ontologies
already available and some alignments, sometimes competing, between them. We call
alignment space such a structure populated by ontologies related by alignments.

Alignment space measures may seem more remote from the true distance between
the ontologies because they do not directly consider their content. However, there are
cases where they can be very useful. This is obviously the case when ontologies are not
available, e.g. because they are on a closed server, but alignments between these ontologies
and others exist. Such unavailable ontologies may be used as a target ontology or as an
intermediate ontology (and then alignments may be composed).

This is also the case when the similarity between ontologies has to reflect the ability to
transform a statement or a query from one ontology to another, e.g. in semantic peer-to-
peer systems or dynamic composition of semantic web services. Since alignment spaces are
structured by actual alignments, an alignment space measure is indeed reflecting to some
extent the capacity to translate ontology expressions. Such measures would be even more
useful if they could be computed quickly with respect to a particular query or formula.
On the other hand, distances in an ontology space only provide a measure of closeness,
and an alignment or a mediator remains to be produced.

Even if ontologies are available, such measures may be useful as approximations of the
“real distance” which are easier to compute than comparing the ontologies: alignment-
based measures can quickly provide a hint on what are the most promising options. Indeed,
because they already provide the structure to compute the measure, alignments are faster
to compare than elaborate comparison of two ontologies as a whole.

Path-based measures

At an upper level an alignment space can be represented as a graph whose vertices are
ontologies and edges indicate the existence of an alignment between the connected ontolo-
gies. An example of such a graph is given Figure 2.1. A first kind of similarity between
two ontologies may be based on paths in this graph.

In fact, the existence of a path guarantees that an alignment between the two ontologies
can be computed and that queries could be translated from one ontology to another. A
first basic measure considers different values if the path is made of zero, one or several
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Figure 2.1: An example of a graph at the granularity of alignments given by an
alignment space
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Figure 2.2: A network composed of six ontologies and 5 alignments

alignments. The similarity is maximal when the ontologies are the same and minimal
when there is no alignment between them, for instance between o1 and o6. The similarity
is higher when there is a single direct alignment, e.g. between o1 and o2, than when several
alignments have to be composed, e.g. between o1 and o4.

However, this first similarity is not very precise in the number of transformations that
may have to be performed to propagate this information. For example, o1 is as similar
to o3 as to o4. So, a natural extension of this measure depends on the shortest path in
the alignment space. Indeed, the fewer alignments are applied to a query, the more it
is expected that it is an accurate translation (in first approximation). In this case, the
similarity between o1 and o3 will be higher than those between o1 and o4 because the last
one requires at least 3 alignments instead of 2.

These path-based measures are very easy to compute but they do not quantify precisely
how ontologies are similar. For instance, there could exist a path of alignments between
ontologies that leads, through composition, to an empty alignment. And even if alignments
are not empty, this measure does not tell how much of an ontology is preserved through
the translation.
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Coverage-based measures

If we want to go further in measuring the precise proximity for querying applications,
it may be useful to consider the ratio of concepts of one ontology which are covered by
an alignment. In fact this can be applied to any set of elements, not just an ontology.
Hence the coverage can be given with regard to an ontology entity (the ratio is 1 or 0),
to a query or to an ontology. It corresponds to the percentage of entities which have an
image through a given alignment. Alignments may not be functional nor injective: several
concepts can be matched to a single one and vice-versa. There is a second important
notion which is the ability for the alignment to preserve the difference between concepts
which are deemed different in the source ontology. We have then introduced the alignment
distinguishability measure defined as the proportion of matched entities which are kept
distinct. Both coverage and distinguishability can be merged into a single measure that
is the ratio between the number of matched concepts over the number of source concepts.
For instance, on Figure 2.2, the coverage of o1 through A1,2 is 3/5, the distinguishability
is 2/3 and the coverage-distinguishability is 2/5.

In the ontology space, there is not necessarily an alignment between two ontologies
but a path of alignments. In this case, an alignment can be computed as the composition
of the alignments along this path.

Following this idea of coverage, we have proposed two measures. The first one will
be computed on the path that maximizes the coverage-distinguishability while the second
one is calculated on an alignment obtained by the union of all paths between the two
ontologies. For instance, the first measure between o2 and o5, that only use the alignment
A2,5, is equal to 2/7 while the second one, that also exploits the path A2,3, A3,4, A4,5, is
equal to 3/7. These measures are not symmetric, but they can be easily transformed into
similarities.

Experiments and results

These measures in the alignment space have been compared to those proposed in the
ontology space. In (David, Euzenat, and Sváb-Zamazal, 2010), we have performed several
experiments using the OntoFarm dataset (Šváb et al., 2005).

The most interesting aspect of the results is that coverage-based measures were far
more correlated with the measures in the ontology space than to the path-based measures.
They were even more correlated to the global measures in the vector-space than the global
measures agree with the concept-based measures. This shows that the coverage measures,
which do not have access to the content of ontologies, are meaningful with regard to this
content.

The two path-based measures were poorly correlated to the others because of the topol-
ogy of the alignment space: either there exist as short path between a pair of ontologies
or they are not connected at all. The graph of alignments in OntoFarm is very connected
(91 alignments out of 105 possible ones) so these measures are not discriminant: the on-
tologies come in few groups depending on how they are connected to the others, most of
them being reachable through one alignment.

Moreover, we have also shown experimentally that coverage measure are reasonably
robust to errors in the alignments, especially if individual correspondences are missing.
This is very encouraging for measures that do not rely on ontology content.
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2.5 Conclusions and perspectives

This chapter presented advances made on measuring distances or similarities between
ontologies. We distinguished the cases where ontologies are aligned or not. In both
cases, we have proposed several measures, analysed their characteristics and evaluated
them experimentally. Results have shown that global measures based on vector space are
simple yet relevant. Especially these measures are also more correlated to coverage-based
measure in the alignment space, than more elaborate concept-based measures.

We have not pursued directly on this topic for the last ten years, but lessons learned
from these works have partly guided some of our work, in particular that of Tatiana
Lesnikova’s thesis (Lesnikova, 2016). With the recent development of ontology embeddings
(Chen et al., 2021), our global ontology measures could be redefined in the space of
embedding and compared to those we proposed.

More generally, we believe that diversity help to produce more robust knowledge and
should be taken into account by ontology matching, knowledge completion, and ontology
learning methods. Indeed, there is not one single way to learn knowledge and evaluating
methods only in term of accuracy is not sufficient. Diversity in knowledge representation
has not been thoroughly studied so far. However, diversity allows knowledge to be more
adaptable in new situations. For instance, it has been shown, in different contexts, that
groups of agents with diverse abilities have better problem solving skills those with high
abilities (Stirling, 2007; Hong and Page, 2004; Noble et al., 2015). In the more general
context of knowledge evolution through communication between agents, we considered
measuring and controlling knowledge diversity of a population of agents (Bourahla, David,
et al., 2022). In particular we considered to measure diversity by taking advantage of
distance between ontologies such as those discussed in this chapter.

My perspective is to pursue the study of measuring knowledge diversity, taking advan-
tage of ontology distances and diversity measures developed in the context of phylogenetics
(Tucker et al., 2016; Leinster, 2021). There are different point of views of diversity and
then several measures have been developed. The simplest one, the α-diversity is the num-
ber of species that are observed. Another family of measure also consider the abundance
of each species. These measures, such as the Hill numbers, are mostly based on the con-
cept of entropy. A last family of measures takes into account similarity between species.
Diversity measures and relations between have been also studied from mathematical point
of view (Leinster, 2021).

In a first case, we are interested in measuring the diversity of concepts within a single
ontology. The simplest measure of diversity is the number of concepts within the ontology.
But, as for phylogenetics, more elaborate measures taking into account the number of
instances per concepts and similarity between concepts can be developed. Such measures
have applications for verifying and controlling the diversity when a single ontology evolves.

In the second case, one could be interested in evaluating the diversity of a set of agents
based on their knowledge (ontology). This can be useful, for instance, in multi-agent
simulations such as those performed for cultural knowledge evolution (Bourahla, Atencia,
et al., 2021). Such measures have to count how many different ontologies are used by
a population of agents, their frequency of usage and also the similarity between them.
Controlling diversity in cultural knowledge evolution experiments would help to analyse
the impact of the diversity on the communication success and also on the community
resilience in the face of disruptive events.



Chapter 3

Quality measures for ontology
alignments

Since there is a variety of ontologies, the problem of matching ontologies is difficult to
solve in a universal way. Ontologies may vary in terms of formalization in terms of text
annotations, natural language used for annotations, granularity, etc. In this context, many
ontology matchers have been proposed (Euzenat and Shvaiko, 2013).

To assess their strengths and weaknesses, ontology matchers have to be evaluated. The
Ontology Alignment Evaluation Initiative (OAEI)1 aims at providing a consensus for the
evaluation of ontology matchers. Since 2004, OAEI organizes, every year, an evaluation
event and publishes the results. This helps the developers of ontology matchers to improve
their systems and allows everyone to compare matching strategies on an open and common
basis (Achichi, Cheatham, et al., 2016).

The evaluation of ontology alignments often relies on comparing them with a reference
alignment. To assess their quality, classical precision and recall measures are usually
computed. It has been shown that these measures suffer from several drawbacks since
they do consider neither the semantics of aligned ontologies nor the atomic proximity
between found correspondences and expected ones. To overcome such limitations, relaxed
precision and recall (Ehrig and Euzenat, 2005) and semantic precision and recall (Euzenat,
2007) have been proposed.

Precision and recall-based measures are well suited in controlled environments where
reference alignments are available. But in real scenarios, these reference alignments are
of course not known. In that context, the quality of ontology alignments can be approx-
imated using different heuristics such as consistency (or satisfiability) (Meilicke, 2011) or
conservativity principle (Solimando, Jiménez-Ruiz, and Guerrini, 2017).

In our work, we were interested in the evaluation of alignments without considering
the dimensions relative to the tools that have produced them, such as runtime efficiency,
or scalability. We also do not consider the particular task for which the alignments will
be used such as query answering (Solimando, Jiménez-Ruiz, and Pinkel, 2014). In the
following, we make distinction between extrinsic evaluation relying on a reference align-
ment from intrinsic evaluation that could only take advantage of two ontologies and an
alignment between them.

Our work have addressed both kinds of evaluation approaches. On the extrinsic part,
our contributions is a generalization of both relaxed and semantic frameworks that allows

1http://oaei.ontologymatching.org
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to repair some of their individual problems. For intrinsic evaluation, we have adapted
and generalized the principle of agreement and disagreement between ontologies (d’Aquin,
2009).

3.1 Related work

Extrinsic evaluation

When we worked on alignment evaluation, the most common way to evaluate ontology
alignments was to compare them with a reference and calculate precision and recall mea-
sures (Euzenat, 2003). These measures consider alignments as set of correspondences
and compare them strictly, using the size of the intersection between both sets, without
considering neither proximity between correspondences nor their semantics.

Starting from the fact that it is not because a correspondence is not in the reference
that it is fully incorrect, (Ehrig and Euzenat, 2005) has proposed to relax precision and
recall measures. Classical precision and recall take as numerator the size of the inter-
section between the evaluated and the reference alignments. Instead of this, a relaxed
measure use an overlap function which quantifies how the alignments are close to each
other. The overlap function aggregates proximities between correspondences and can be
one of the collection distances discussed in Section 2.3, such as the maximum weight
maximum matching measure. The paper proposes three concrete measures: symmetric,
correction effort and oriented proximities (one for each precision and recall). The symmet-
ric proximity is function of the distances between entities and the correction effort adopts
the approach of an edit distance between correspondences. The oriented proximities are
defined differently for precision and recall. They are a first attempt to capture the se-
mantics of alignments in the sense that if an evaluated correspondence is entailed by a
reference one (but have the same relation), the proximity will be 1 for precision. However,
as in the classical model, these measures are still syntactic measures and do not satisfy
any of the properties desired by a semantic model such as a precision equals to 1 when
the evaluated alignment can be deduced from the reference one. But, they can be a good
basis for new measures which partially consider semantic.

(Euzenat, 2007) introduced semantic precision and recall for evaluating alignments. In
particular, the author first introduces ideal measures that are defined on the deductive
closures of alignments (named α-consequences) instead of the set of asserted correspon-
dences. However, such sets can be infinite hence the measure could not be calculated.
Then the author has proposed the semantic precision to be the proportion of asserted cor-
respondences that can be deduced from the reference alignment and the semantic recall to
be the proportion of reference correspondences than can be deduced from the evaluated
alignment.

We have shown in (David and Euzenat, 2008b) that theses measures can be artificially
increased by introducing redundancy and we have proposed to fix these measures using
ideal semantic precision and recall bounded to a set of alignments.

Measures based on alignment repair strategies

The evaluation of alignments without a reference can be supported by the principles of
consistency and conservativity discussed in (Jiménez-Ruiz et al., 2011).

(In)consistency in alignments has been introduced by (Stuckenschmidt et al., 2006) in
the context of reasoning with alignments. (Meilicke and Stuckenschmidt, 2008; Meilicke,
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2011) defined the degree of incoherence as the ratio between the size of a/the minimal
set of correspondences that introduce incoherency over the the size of the alignment.
The complement to 1 of this degree of incoherence is an upper bound for the precision,
if we require the reference alignment to be coherent. Coherency, here means that all the
concepts that were satisfiable in each ontology separately are still satisfiable on the merged
ontology, i.e. the union of the ontologies and the alignment. From this (Jiménez-Ruiz et
al., 2011) has defined the consistency principle which states that the theory resulting of
the union of ontologies and their alignment should be consistent and the all the named
entities (named classes, data properties and object properties) should be satisfiable.

The conservativity principle states that an alignment should not introduce new rela-
tions between concepts of input ontologies. The literature highlights two variations on
this principle. (Jiménez-Ruiz et al., 2011) states: given ontologies o and o′ and alignment
a between o and o′, then o ∪ a should not introduce new relations between concepts of
o. (Solimando, Jiménez-Ruiz, and Guerrini, 2017) gives an even more stronger definition:
o ∪ o′ ∪ a should not introduce new relations between concepts of o. This last work also
introduces two relaxations of the conservativity principle: subsumption and equivalence
conservativity principles.

The general conservativity principle is a strong statement based on the intuition that
if an alignment allows to deduce new knowledge then this is probably incorrect. This is,
to our opinion, very restrictive because an alignment can be beneficial for both ontologies
involved. However, in (Solimando, Jiménez-Ruiz, and Pinkel, 2014), it has been shown,
in the context of query rewriting, that it can impact the quality of the results and it has
also been integrated as a quality indicator in various OAEI tracks.

Instead of focusing solely on potential errors, it may make sense to quantify the com-
mon and divergent knowledge that an alignment brings out. This is the principle of
agreement and disagreement measures presented in the following section.

Instance-based evaluation

Another way to overcome the lack of a gold-standard is to rely on a common base of
instances. To that extent, the intrinsic instance-based precision has been introduced
(Thiéblin, Haemmerlé, and Trojahn, 2021). This measure consists in verifying if the
sets of instances corresponding to each side of a correspondence support the same relation
than those stated by the correspondence.

They also proposed to evaluate the alignment coverage relying on Competency Ques-
tions for Alignments (CQA), i.e. pairs of equivalent queries over two ontologies. The
proposed measure, CQA coverage, quantifies how well a set of CQA is covered by an
alignment. This measure cannot be qualified of intrinsic since it relies on CQA that are
some kind of aligned knowledge. However, the authors have shown that such an approach
is accurate for evaluating complex alignments.

Agreement and disagreement

Agreement and disagreement measures, introduced by (d’Aquin, 2009), allow to quantify
how aligned ontologies agree or disagree. The idea is that ontologies agree when they
contain compatible assertions and they disagree when they contradict each other. The ap-
proach consists in comparing the relation that exists between each pair of entities (classes,
properties, instances) of a first ontology with the relation that holds in a second ontology
between the images of entities obtained by a (functional) alignment.
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Figure 3.1: Example of a reference alignment Ar and two alignments A1 and A2

The degree of agreement/disagreement between two relations is given thanks to ad-hoc
tables defined in (d’Aquin, 2009). The relations taken into account are subClassOf, equiv-
alentClass, domain, range, disjointWith, type, sameAs, differentFrom, subPropertyOf, or
a generic, user-defined property R, e.g. isPartOf , isAuthorOf. Even if these values follow
intuitively the semantics of ontologies, they are not formally grounded on the ontology
semantics.

These measures have not been designed for alignment evaluation purpose, but in an
ontology retrieval perspective. However, by making explicit the role of alignments into
them and generalizing this principle, this approach could be beneficial to ontology align-
ment evaluation. This work was the starting point from which we designed the inclusion
measure presented in Section 3.3.

3.2 Extrinsic evaluation measures

We are interested in the evaluation of alignments when reference alignments are available.
In this context, we have proposed new evaluation measures that take advantage of both
semantic and relaxed models (David and Euzenat, 2008a). Our approach relies on a
representation of alignments and relations within ontologies based on algebras of relations
(Euzenat, 2008).

We start by highlighting the limits of the different models using an example and then
we show how these can be fixed.

Let us take the example given in Figure 3.1 showing a reference alignment and two
alignments to evaluate. The question is: which alignment among A1 or A2 is more correct
with respect to Ar ?

Both classical and relaxed precision tell us that A2 is better than A1. However, if
we compare the two alignments, we will see that A1 is more correct than A2 because
all the correspondences of A1 are correct while in A2 the correspondence ⟨c1, b2, ⊑⟩ is
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Precision Classical Relaxed Semantic
A1 1/3 1.5/3 3/3
A2 2/3 2/3 2/3

Table 3.1: Precision values obtained by two alignments A1 and A2 w.r.t. Ar

Recall Classical Relaxed Semantic
A1 1/4 1.5/4 1/4
A2 2/4 2/4 2/4

Table 3.2: Recall values obtained by two alignments A1 and A2 w.r.t. Ar

A3

a1

b1 c1

d1 e1

a2

c2

e2 d2

b2
⊥

̸⊑

⊑

⊑

≡

A4

a1

b1 c1

d1 e1

a2

c2

e2 d2

b2
⊥

⊑

⊑

≡

Figure 3.2: Example of two alignments A3 and A4 to be compared to the reference one
given Figure 3.1

incorrect. Only the semantic precision is able to capture this, hence it better reflects the
real correctness of alignments.

In term of recall, for the alignment A1, neither classical nor semantic recall take into
account the correspondences ⟨d1, c2, ⊑⟩ and ⟨e1, c2, ⊑⟩. However, even if these two cor-
respondences do not belong to the reference alignment Ar, they contribute to a part of
information contained in Ar and we can acknowledge that A1 convey more information
than an alignment only made of the correspondence ⟨c1, c2, ≡⟩. Only relaxed recall is able
to consider this.

Semantic measures do not necessarily evaluates in the same way semantically equivalent
alignments. For instance, on Figure 3.2, A3 and A4 are equivalent because ⟨c1, b2, ̸⊑⟩ can
be entailed thanks to the correspondence ⟨e1, c2, ⊑⟩ and the axiom c2 ⊓ b2 ⊑ ⊥ of the
second ontology.

To overcome such problems, we have proposed to merge relaxed and semantic eval-
uation measures. Our approach relies on algebras of alignment relations introduced in
(Euzenat, 2008) and refined in (Inants, 2016). Such an algebra allows to write any rela-
tion between concepts as a disjunction of elementary relations, for instance those of A5,
i.e. Γ = {⊏,⊐, ≡, ≬, ⊥}. Furthermore, we also take advantage of them to introduce a
normal form on alignments allowing to compare them on the same syntactical basis.

Thanks to algebras of relations, proximity measures between correspondences can
be defined. They are functions of the cardinality of the intersection between the rela-
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O1
a1 b1 c1 d1 e1

a1 ≡ ⊐, ≡ ⊐, ≡ ⊐, ≡ ⊐, ≡
b1 ⊏, ≡ ≡
c1 ⊏, ≡ ≡ ⊐, ≡ ⊐, ≡
d1 ⊏, ≡ ⊏, ≡ ≡
e1 ⊏, ≡ ⊏, ≡ ≡

O2
a2 b2 c2 d2 e2

a2 ≡ ⊐, ≡ ⊐, ≡ ⊐, ≡ ⊐, ≡
b2 ⊏, ≡ ≡ ⊥ ⊥ ⊥
c2 ⊏, ≡ ⊥ ≡ ⊐, ≡ ⊐, ≡
d2 ⊏, ≡ ⊥ ⊏, ≡ ≡
e2 ⊏, ≡ ⊥ ⊏, ≡ ≡

Figure 3.3: Closed self alignments of ontologies O1 and O2. An empty cell means that
the relation is unknown, i.e. Γ.

tions within the correspondences. For example, let us consider the two correspondences
⟨a1, a2, {≡}⟩ and ⟨a1, a2, {⊏, ≡}⟩. The precision proximity is |{≡} ∩ {⊏, ≡}|/|{≡}| = 1
while the recall proximity is |{≡} ∩ {⊏, ≡}|/|{⊏, ≡}| = 1/2. This example takes the se-
mantics of alignment into account but does not integrate those of ontologies. This can be
easily fixed by using composition of relations as shown in (David and Euzenat, 2008b).
The idea is to compose the relations of the first ontology with those of the alignment and
finally with those of the second one. This approach is not complete but it is correct and
has the advantage of offering calculable measures.

Our relaxed semantic evaluation model represents alignments as matrices where row
and columns represent the named entities from the ontologies and values are sets repre-
senting the disjunction of elementary relations that hold between entities. If the relation
is unknown, the disjunction is made of all elementary relations Γ.

Combined with closure, this representation acts as a normal form since the relation
that holds between each pair of named entities is given. This allows to get rid of the cardi-
nality of alignments that introduces problems when syntactically different but semantically
equivalent alignments are compared.

The procedure takes as input the two self (closed) alignments of ontologies o1 and o2
and an alignment represented as matrix of relations. The ontology matrices are given
Figure 3.3 and those of alignments are given Figure 3.4. The closure of an alignment Ax

is simply obtained by doing the matrix multiplication A+
x = O1 · Ax · O2 using intersection

over composition operator of algebras of relations.
Then the relaxed semantic precision and recall measures are calculated by averaging

the precision, resp. the recall, proximities over all known relations, i.e. those which are
different from Γ. Results are given in Table 3.3. With this relaxed semantic evaluation
model, since A1 is correct, it obtains a precision of 1. The recall is now able to take
into account the two correspondences with subsumption, since without them the recall is
equals to .59 only. This example also shows that the more general a correspondence is, the
more influence on the precision and recall values it has. The incoherent correspondence
contained in A2 has a strong negative impact on both precision and recall. And finally,
we see that both A3 and A4 even if they have different syntactical forms have the same
precision and recall because they are semantically equivalent.

Our relaxed and semantic evaluation model solves several issues that we have illustrated
previously. However, we can identify some limitations. First, it does not necessarily encode
all ontology relations between entities, as for instance ternary relations such as c1 ⊑ d1⊔e1.
At the level of alignments, it is restricted to simple alignments with correspondences
between named entities only.

If one wants to use this model in the case of complex alignment evaluation, the approach
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Original alignments

Ar a2 b2 c2 d2 e2
a1 ≡
b1
c1 ≡
d1 ≡
e1 ≡

A1 a2 b2 c2 d2 e2
a1 ≡
b1
c1
d1 ⊏, ≡
e1 ⊏, ≡

A2 a2 b2 c2 d2 e2
a1 ≡
b1
c1 ⊏, ≡
d1
e1 ≡

A3 a2 b2 c2 d2 e2
a1
b1 ≡
c1 ⊐, ≬, ⊥
d1 ⊏, ≡
e1 ⊏, ≡

A4 a2 b2 c2 d2 e2
a1
b1 ≡
c1
d1 ⊏, ≡
e1 ⊏, ≡

Closed alignments

A+
r a2 b2 c2 d2 e2

a1 ≡ ⊐ ⊐, ≡ ⊐, ≡ ⊐, ≡
b1 ⊏, ≡
c1 ⊏, ≡ ⊥ ≡ ⊐, ≡ ⊐, ≡
d1 ⊏, ≡ ⊥ ⊏, ≡ ≡
e1 ⊏, ≡ ⊥ ⊏, ≡ ≡

A+
1 a2 b2 c2 d2 e2

a1 ≡ ⊐ ⊐, ≡ ⊐, ≡ ⊐, ≡
b1 ⊏, ≡
c1 ⊏, ≡ ⊐, ≬, ⊥ ⊏,⊐, ≡, ≬
d1 ⊏, ≡ ⊥ ⊏, ≡
e1 ⊏, ≡ ⊥ ⊏, ≡

A+
2 a2 b2 c2 d2 e2

a1 ≡ ⊐ ⊐ ⊐ ⊐
b1 ⊏, ≡
c1 ⊏, ≡ ∅ ∅ ⊥ ∅
d1 ⊏, ≡ ⊏, ≡ ⊥ ⊥ ⊥
e1 ⊏, ≡ ∅ ∅ ⊥ ∅

A+
3 a2 b2 c2 d2 e2

a1 ⊏,⊐, ≡, ≬ ⊐ ⊐, ≬ ⊐, ≬, ⊥ ⊐, ≬, ⊥
b1 ⊏, ≡ ≡ ⊥ ⊥ ⊥
c1 ⊏,⊐, ≡, ≬ ⊐, ≬, ⊥ ⊏,⊐, ≡, ≬
d1 ⊏, ≡ ⊥ ⊏, ≡
e1 ⊏, ≡ ⊥ ⊏, ≡

A+
4 a2 b2 c2 d2 e2

a1 ⊏,⊐, ≡, ≬ ⊐ ⊐, ≬ ⊐, ≬, ⊥ ⊐, ≬, ⊥
b1 ⊏, ≡ ≡ ⊥ ⊥ ⊥
c1 ⊏,⊐, ≡, ≬ ⊐, ≬, ⊥ ⊏,⊐, ≡, ≬
d1 ⊏, ≡ ⊥ ⊏, ≡
e1 ⊏, ≡ ⊥ ⊏, ≡

Figure 3.4: Alignments and their closures. An empty cell means that the relation is
unknown i.e. Γ, while ∅ represents incoherency.

Precision Recall
A1 1 .78
A2 .38 .69 (.47)
A3 .75 .62
A4 .75 .62

Table 3.3: Relaxed semantic precision and recall value of alignments w.r.t. Ar
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consists in adding new row and/or columns in the matrices. These new rows and columns
represents all class expressions that appear in complex alignments or in ontologies. In the
case of evaluation campaigns, where the alignments can contain different class expressions,
it would require to consider all of these expressions together, if we want to compare all
alignments on the same basis. However, as previously mentioned, this requires to deter-
mine the relations holding between expressions that appear in the correspondences. This
is not straightforward in the case of query languages allowing transformation functions.

All these evaluation models still rely on reference alignments. This kind of measures
is useful in controlled evaluation environments such as OAEI however in real conditions,
references does not exist. In the following section, we address the problem of evaluating
the quality of alignments without references and we propose intrinsic evaluation measures.

3.3 Intrinsic evaluation measures

Approaches to intrinsic evaluation of alignments mostly rely on either the coherency or
the conservativity principles. There are both semantic evaluation models. However, they
are not very informative: there are many conservative or coherent alignments that are
incorrect.

We propose to measure the quality of alignments thanks to inclusion and exclusion
indexes between ontologies modulo the alignment. This is in fact a generalisation of
agreement and disagreement measures proposed by (d’Aquin, 2009) that makes explicit
the role of alignments in these measures and that considers the semantics of ontologies
and alignments. A main difference with the aforementioned measures is that our vision
of inclusion is not symmetric while the agreement is symmetric. For instance, if a first
ontology asserts that B is a subclass of A and second one states that A and B are equivalent
classes, according to (d’Aquin, 2009), the two ontologies partially agree. In our opinion,
this notion of agreement depends on the point of view, and is directly linked to entailment:
the first ontology will not fully agree with the second one while the second one will agree
with first one. This justify the need of asymmetric measures of inclusion and exclusion.

The degree of inclusion of one ontology O1 into an ontology O2 given an alignment A
is the proportion of axioms of O1 that are entailed by the union of A and O2. The degree
of exclusion from O1 to an ontology O2 given an alignment A is the proportion of axioms
of O1 that are contradicted by the union of A and O2.

At a first glance, the idea seems simple, but there are several dimensions to consider
and different measures can be developed. In particular, we can distinguish the following
dimensions:

• The model used to represent ontologies: They are usually represented as a set of
OWL/DL axioms but we can also use simplifications such as the set of relations
between concepts. These relations can be expressed as triples (RDF) or using some
algebra of relations (Inants, 2016).

• The basis: The measure can be calculated on the basis of all the concepts declared in
the ontologies, but it can be also restricted to only aligned ones. While the first one
better reflects how an ontology is included into another one, the latter can be useful
in evaluation contexts where for the same level of inclusion, a smaller alignment may
be an indicator of a better precision.
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• The inclusion/exclusion checking: the inclusion may be reduced to entailmen-
t/unsatisfiability checking, but it can also rely on predefined values such those given
in (d’Aquin, 2009) or computed thanks a proximity between relations.

In the following, we investigate two families of measures. The first one models ontolo-
gies as a set of OWL axioms and check inclusion, resp. exclusion, thanks to entailment,
resp. unsatisfiability. The second family represents ontologies as binary relations between
concepts thanks to algebras of relations. Inclusion and exclusion checking rely on set in-
clusion between disjunctive relation, but can be defined thanks to proximities in the same
way as for relaxed semantic measures presented in the previous Section 3.2.

Inclusion and exclusion measures based on axioms

Ontologies can be seen as a set of axioms. As shown in Figure 3.5, measures will consist
in checking for each axiom of the first ontology, if it is entailed by the union of the other
ontology and the alignment. For instance, the inclusion degree between o1 and o2 modulo
A is 3/5 if the basis considers all axioms or 3/4 if it is restricted to only aligned axioms.
The exclusion degree is 1/5 (or 1/4 in case of aligned axioms).

Our hypothesis, is that the measure of inclusion, when computed on the full basis,
is correlated to the recall measure: the higher the recall is, the more correct correspon-
dences are contained the alignment and then the higher is the inclusion degree. But when
restricted to the aligned basis, it could be more correlated with the precision.

These measures can be good candidates for evaluating the quality of alignment if
no reference is given. However they are sensitive to modifications in the alignment, for
instance, if the correspondence ⟨c1, c2, ≡⟩ is removed, then the inclusion degree drops to
1/5 because axioms containing class c1 cannot be entailed any more. However, one can
see that some part of their consequences, e.g. SubClassOf(:e1 :a1), is still entailed.

In order to fix such behaviour, the closure of ontology can be considered, but it may
be large, if not infinite. A compromise is to focus on the relations between every pair of
concepts instead of axioms.

Inclusion and exclusion measures based on relations

To illustrate the indexes based on relations, we use the example of Figure 3.5. If one
want to measure the degree of inclusion of O1 into O2 given A, she will have to compose
A.O2.A−1. This composition gives a representation of relations between concepts of O1
that can be deduced from the alignment A and the ontology O2 as shown in Figure 3.6.

Since the relations are reversible, we only consider half part of matrices of Figure 3.6.
The two measures are obtained by comparing the informative relations, i.e. different from
Γ, from the matrix of O1 to those of the composition. On Figure 3.6, relations in dark
grey include those of the composition and are then counted as inclusions, while the one
in light grey has an empty intersection with the composition and is then counted as an
exclusion.

On this example, the degree of inclusion, resp. exclusion, of O1 into O2 modulo A is
equal to 9/14, resp. 1/14, if all entities are included in the basis. If the basis is restricted
to only aligned entity the denominator becomes 11.

The use of this model based on relation algebra makes the measures less sensitive to
alignment than those based on asserted axioms. For instance, if ⟨c1, c2, ≡⟩ is removed, we
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A

O1
a1

b1

f1

c1

d1 e1

O2
a2

c2

e2 d2

b2
⊥

≡

≡

⊑

≡

≡

O1 A ∪ O2
SubClassOf(:b1 :a1) |=
SubClassOf(:c1 :a1) |=
SubClassOf(:d1 :c1) -
SubClassOf(:e1 :c1) |=
SubClassOf(:f1 :b1) ⊥

O2 A ∪ O1
SubClassOf(:b2 :a2) |=
SubClassOf(:c2 :a2) |=
SubClassOf(:d2 :c2) ̸|=
SubClassOf(:e2 :c2) ̸|=

DisjointClasses(:b2 :c2) ̸|=

Figure 3.5: Axioms that are entailed by (|=) or incoherent with (⊥) the union of the
alignment and the other ontology. An empty cell means that the axiom contains not

aligned concept.

O1
a1 b1 c1 d1 e1 f1

a1 ≡
b1 ⊏, ≡ ≡
c1 ⊏, ≡ ≡
d1 ⊏, ≡ ⊏, ≡ ≡
e1 ⊏, ≡ ⊏, ≡ ≡
f1 ⊏, ≡ ⊏, ≡ ≡

A.O2.A−1

a1 b1 c1 d1 e1 f1
a1 ≡
b1 ⊏, ≡ ≡
c1 ⊏, ≡ ⊥ ≡
d1
e1 ⊏, ≡ ⊥ ⊏, ≡
f1 ⊏, ≡ ⊥ ⊏, ≡ ≡

Figure 3.6: Closed self alignments of ontology O1 and the composition A · O2 · A−1. An
empty cell means that the relation is unknown i.e. Γ

observe a decrease from 9/14 to 6/14 but in the previous model the decrease was from 3/5
to 1/5.

Interestingly, these measures can be relaxed following the approach of relaxed semantic
precision and recall presented in Section 3.2. By doing so, we can generalize measures of
agreement and disagreement proposed by (d’Aquin, 2009). In fact instead of relying on
an ad-hoc table with the different levels of agreements and disagreement, they can be
computed thanks to inclusion or exclusion degree of disjunctive relations.

As pointed out in the previous section, such a model is restricted to binary relation
between concepts. For instance and contrary to the measures based on axioms, algebra
of relations can not encode axioms between classes and properties such as the domain or
range.
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3.4 Conclusions and perspectives

This chapter focused on providing metrics for evaluating ontology alignments. In this
context, we studied both extrinsic and intrinsic evaluation. While the former relies on
a gold standard, the latter attempts to estimate the quality of the alignment without
reference. One of its originality lays in intrinsic metrics which have rarely been studied.
However, this type of evaluation is more appropriate in real-life scenarii where the ground
truth is not known. Another originality is the consideration of ontology semantics and
alignments in the proposed metrics.

At the extrinsic evaluation level, we merged the semantic and relaxed approaches.
Using relation algebra, we have defined a kind of alignment normal form. Unlike classical
metrics for precision and recall evaluation, this formalization has the advantage of giving
the same score to semantically equivalent alignments, while being computable.

We also studied the intrinsic assessment of alignment. Inspired by the agreement
and disagreement proposed by M. d’Aquin, we generalized them to propose inclusion and
exclusion measures. The inclusion, resp. exclusion, measure quantifies the proportion of
axioms from one ontology that are included in, resp. are contradicted by, the other modulo
the alignment. We have also provided a model of these measures based on an algebra of
relations.

Although this work still needs to be experimented, we think that it could be extended
following two directions: the first one is the evaluation of complex alignments and the
second one is the use of inclusion and exclusion measures for cultural knowledge evolution.

The first perspective is to explicitly extend these evaluation models to complex align-
ments. They have the advantage, contrary to classical precision and recall, to handle more
than equivalence relation in the correspondences. However, they are still mostly restricted
to correspondences matching concepts names (classes and properties). If one would eval-
uate more expressive alignments, i.e. complex alignments where aligned entities can be
concept descriptions or SPARQL queries, then query containment as to be considered
(David, Euzenat, Genevès, et al., 2018).

Cultural knowledge evolution applies concepts from biological evolution to knowledge
seen as culture (Euzenat, 2017). In such a field, experiments are made with agents that
use ontologies to represent their knowledge. They iteratively play an interaction game
that may succeed or fail, and if the game fails then an adaptation or revision is made
on their ontologies. In such a game, the agreement between agents will increase over
iterations. We think that the inclusion measure, proposed Section3.3, could be used to
predict the success rate or the convergence speed of experiments made in the field of
cultural knowledge evolution.

The inclusion measure has been designed for alignment evaluation, but if one considers
that the alignment is “the reference” one, it can be seen as hybrid ontology metric that both
consider ontology content and alignment. One could expect that the more the ontologies
agrees, i.e. the higher the inclusion values, the more chances the game will succeed.
Conversely, the more ontologies disagree, the more chance the game will fail. Another
hypothesis to test is that these measures are clues for guessing the convergence speed of
success rate.





Chapter 4

Algorithms and measures for data
interlinking

There are large amounts of RDF data available on the Web, in the form of knowledge
graphs or as part of linked open data. Interoperability between RDF datasets largely
relies on links between resources from different RDF datasets and especially links asserting
the identity of resources bearing different IRIs, specified using the owl:sameAs property
(Heath and Bizer, 2011). Since RDF datasets tend to be large, the automatic discovery
of owl:sameAs links between RDF datasets is an important and challenging task. This
task is usually referred to as data interlinking and different algorithms and tools for data
interlinking have been proposed (Ferrara et al., 2011; Nentwig, Hartung, Ngonga Ngomo,
et al., 2017b).

We addressed the challenge of data interlinking with a symbolic approach. Our goal was
to investigate unsupervised methods for data interlinking that also minimize the required
input. We started with the notion of key in RDF combined with ontology alignments and
we finally designed the generalizing notion of link keys.

In databases, keys are functional dependencies that allow to identify tuples in a given
relation. They are a meaningful and well-defined model for performing deduplication and
identification. They have also the advantages to be easily integrated to ontologies thanks
to the owl:hasKey constructor and they can be expressed as link specification used by tools
such as SILK (Volz et al., 2009) or LIMES (Ngonga Ngomo and Auer, 2011).

We have designed an algorithm for extracting keys in RDF datasets. It is inspired by
those used for the discovery of functional dependencies in databases (Mannila and Raiha,
1994; Huhtala et al., 1999). The main difference is that we deal with non functional
properties. We have also made the distinction between different flavours of keys and
introduced the notion of pseudo-keys. The quality of pseudo-key can be assessed with
measures such as discriminabilty and support.

When one wants to perform data interlinking with keys, an alignment between on-
tologies of the datasets may be needed because datasets do not necessarily use the same
vocabulary. In this case, keys have to be discovered between each dataset independently,
and then only keys for which properties are aligned can be used. This may be expensive
because it will require ontology matching and key extractions. To overcome such a limi-
tation, we have introduced the notion of link key that can been seen as keys defined on
the intersection of datasets.

33
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4.1 Related work

Data interlinking is reminiscent of the task of record linkage in databases (Christen, 2012),
but it is applied to RDF data eventually described with RDFS/OWL ontologies.

The first data interlinking frameworks to be proposed are RDF-AI (Scharffe, Liu, et al.,
2009), KnoFuss (Nikolov, Uren, et al., 2008), SILK (Volz et al., 2009) and LIMES (Ngonga
Ngomo and Auer, 2011). They allow someone to define link specifications and process them
to generate owl:sameAs links between two RDF datasets. Link specifications are similarity
rules specifying the conditions that instances must fulfil in order to be equal. They express
the properties to compare, the transformations applied to them, the similarity measures to
use for comparing pairs of property values, the aggregation functions for combining several
similarity values, and the thresholds beyond which two values are considered equal.

Contributions around these frameworks include languages to express link specifications
and strategies for optimizing the generation of links both in terms of time efficiency and
scaling. SILK makes use of blocking strategies that has been improved in (Isele, Jentzsch,
et al., 2011), while LIMES takes advantage of triangular inequality in the Euclidean space
to reduce the number of comparisons, and optimize execution by rewriting link specifica-
tions (Ngonga Ngomo, 2014).

Beside processing link specifications, work has been carried out on the semi-automatically
discovery of link specifications from data. This has been addressed mainly by using ma-
chine learning techniques such as been done in EAGLE (Ngonga Ngomo and Lyko, 2012),
ActiveGenLink (Isele and Bizer, 2013), COALA (Ngonga Ngomo, Lyko, and Christen,
2013). These techniques are mainly supervised, so they require a set of reference links
or user feedback. They are not able to automatically align properties and to select the
classes to compare, i.e. part of the specifications. An exception is the KnoFuss system
which is able to learn similarity rules in an unsupervised way using a genetic algorithm
(Nikolov, d’Aquin, et al., 2012). These propositions mostly focus on discovering the best
similarity and threshold to find links. Furthermore, none of them consider the semantics
of ontologies describing instances.

A different approach to data interlinking take advantage of idea of functional depen-
dencies transposed to RDF. In OWL, inverse-functional properties or more generally the
owl:hasKey axiom are particular kinds of functional dependencies. Together with an align-
ment between ontologies, they allow to interlink data (Atencia, David, and Euzenat, 2021).
L2R (Säıs, Pernelle, et al., 2007) has been the first logical method for interlinking data
that takes advantage of functional properties, inverse-functional properties and disjoint-
ness axioms. This method has been complemented by the N2R numeric approach to deal
with syntactic variations in values (Säıs, Pernelle, et al., 2009). In (Hogan et al., 2012),
a scalable method to data interlinking has been proposed. It uses a subset of OWL 2
RL rules related to the semantics of owl:sameAs, functional properties, inverse functional
properties and max-cardinality restrictions with value one. These methods are automatic
and unsupervised because they neither need linkage rules such as LIMES or SILK nor
training set of links. However, they rely on declarative axioms that are not necessarily
available in ontologies. Hence methods for discovering them from data are needed.

A first method for discovering inverse-functional properties in RDF has been proposed
by (Song and Heflin, 2011). They relax the notion of inverse-functional properties using
the notions of coverage and discriminability of a property. The coverage of a property
is defined as the ratio of the number of instances of a class having that property to the
total number of instances of that class. The discriminability of a property is the ratio of
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the number of distinct values for the property to the total number of instances having
that property. Syntactic variations in values are handled with string matching techniques.
This interlinking method still need an alignment between properties (and classes) as input.
In (Hogan et al., 2012), thanks to an inverse cardinality index, quasi inverse-functional
properties can also be discovered.

Inverse-functional properties are superseded by keys which are a more general way
to perform logical data interlinking. As for inverse-functional properties, keys are not
necessarily provided with ontologies and need therefore be discovered from data. The
problem of discovering keys has been heavily studied in the database field (Huhtala et al.,
1999; Sismanis et al., 2006). But in the semantic web, the non functionality of properties
makes the problem different. A first approach to discover keys in RDF, named KD2R,
has been proposed in (Symeonidou, Pernelle, et al., 2011). KD2R is based on the Gordian
algorithm (Sismanis et al., 2006) that uses a depth-first search strategy. This approach
does not allow exceptions. We have then proposed an alternative method that allows keys
with exceptions, called pseudo-keys (Atencia, David, and Scharffe, 2012). We have shown
that the semantics of keys discovered by KD2R (and those of OWL2) differs from ours
(Atencia, Chein, et al., 2014). Several other key discovery methods have been published
(Symeonidou, Armant, et al., 2014; Soru et al., 2015).

Having keys between two datasets is not sufficient for interlinking data. They have to
be compatible, in the sense that their properties have to be aligned. Key-based approaches
typically extract keys from RDF data sets, select, and combine them with ontology align-
ments for interlinking (Symeonidou, Armant, et al., 2014; Achichi, Cheatham, et al., 2016;
Farah et al., 2017; Atencia, David, and Scharffe, 2012). Unlike (Symeonidou, Armant, et
al., 2014), the key-based approaches to data interlinking proposed in (Achichi, Ellefi, et al.,
2016; Farah et al., 2017) aim to discover S-keys that hold not only in the source dataset,
but in both source and target datasets. However, it is assumed that the datasets are
described using the same vocabulary, possibly resulting from merging different ontologies
with an alignment, again composed of equivalence correspondences only.

Most of the approaches to data interlinking need input such as alignments, ontology ax-
ioms (functional properties, inverse-functional properties, keys), link specifications and/or
training set of links. My work focused on in designing a logical interlinking approach
minimizing the required input. To that extent, we have developed the notion of link keys.
The discovery of link keys requires only two RDF datasets as input without alignments,
ontologies, or training set of links.

4.2 Key and pseudo-key discovery

Our work on data interlinking has led us to study key extraction from RDF graphs. Indeed,
even the OWL language allows declaring key axioms, it is rare to find such predicates in
ontologies. Furthermore, the variable quality of web data makes it necessary to tolerate
some exceptions, which led us to introduce the notion of pseudo-key.

In (Atencia, David, and Scharffe, 2012), we proposed an algorithm to extract keys
and pseudo-keys from RDF data. We showed experimentally that the algorithm scales
to large datasets such as DPBEDIA (13.8 M triples) where more than 9000 keys (and
pseudo-keys) were extracted in less than 3 hours. We also demonstrated on this example
that pseudo-keys can be used for error detection.

In (Atencia, Chein, et al., 2014), we have with other colleagues investigated two kinds
of keys since RDF properties are multivalued, contrary to relational attributes, which are
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mono valued. They mainly differ on whether the Open World Assumption or the Closed
World Assumption when considering the properties within the key. If a set of properties
form an S-key for a class, it is enough that two instances of the class share one value for
each of the properties of the key to infer that they are the same, e.g. email property for
the AssistantProfessor class. But if the properties form an F-key then the instances must
share all values, e.g. hasPoem property for the PoemAnthology class because two different
poem anthologies may have a poem in common but will unlikely contain exactly the same
poems. The keys considered in (Atencia, David, and Scharffe, 2012) are F-keys contrary to
approaches such as (Symeonidou, Armant, et al., 2014; Achichi, Ellefi, et al., 2016; Farah
et al., 2017) that extract S-keys. The extension to S-keys of the pseudo-key algorithm has
also been implemented.

Principle of the pseudo-key extraction algorithm

The complexity of finding keys in an RDF graph is polynomial in the number of subjects,
but exponential in the number of predicates. Our approach to extract pseudo-keys adopt
the same breadth first search strategy as the functional dependencies discovery algorithm
TANE (Huhtala et al., 1999). It explores the lattice of the power set of properties starting
from singleton property sets. For each set of properties, it builds the partition of instances
where each equivalence class contains the instances having the same set of values for
the properties. If the ratio of singleton within the partition, named discriminability, is
greater than a fixed threshold, it is then a pseudo-key. There are two advantages in this
approach: it facilitates the pruning of the search space and reduces the cost for computing
the partitions of instances. The pruning rule is the following: If a given set of property is
a pseudo-key or its support, i.e. the ratio of instances covered by the partition, is too low
or it contains functional dependency, then all its super sets of properties are discarded.
This pruning strategy also ensures that only minimal keys will be generated.

This notion of pseudo-key relies on the measures of support and discriminability. They
allows to consider the specificities of knowledge graphs such as the open world assump-
tion and the use of support threshold can be useful because properties are not necessary
instantiated for each individual.

Contrary to the TANE algorithm, the use of support threshold can be useful because
properties are not necessary instanciated for each individual. But, in counterpart, the
optimization consisting in stripping partition (Huhtala et al., 1999) (removing singleton
sets) can not be used. Finally, since the goal of the algorithm is to find keys only, there is
no need to test exhaustively all the functional dependencies.

Interlinking with keys

As mentioned previously, keys alone are not sufficient for interlinking datasets expressed
with different ontologies. Our key based interlinking is an extension of the process proposed
by (Scharffe and Euzenat, 2011). As shown on Figure 4.1, it takes as input the two
datasets, their respective ontologies and an alignment between them. In a first step,
pseudo-key discovery is performed on both dataset separately. Then from the alignment
and the two sets of extracted keys, aligned keys for the two dataset are selected. Finally,
these aligned keys can be transformed to SPARQL queries for generating links. They can
also be a good basis for generating link specifications and used with tools like SILK (Bizer
et al., 2009), LIMES (Ngonga Ngomo and Auer, 2011), KnoFuss (Nikolov, Uren, et al.,
2008), or RDF-AI (Scharffe, Liu, et al., 2009).
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Figure 4.1: Key-based data interlinking workflow

This is a generic workflow that can be adapted and optimized for particular interlinking
tasks. For instance, one could take advantage of alignments to optimize the pseudo-key
extraction process: in fact this can be performed only on properties that are aligned. The
generation of link specifications could also take advantage of the discriminability values
of pseudo-keys: we could imagine for instance an iterative process that starts by applying
the best keys and then iteratively apply the other on the remaining instances.

Application to error detection

Experimenting the pseudo-key extraction algorithm led us to consider another application:
the detection of errors in a dataset. When slightly relaxing the notion of keys by decreasing
the discriminability threshold in order to detect pseudo-keys, we see appearing keys that
are valid for most instances but are not keys for a small number of instances. Observation
of these instances reveals the presence of duplicates or errors in the dataset. In order to
find errors, we transform pseudo-keys found in that way into SPARQL queries to retrieve
only instances having the same values for the properties of the key. We then use the query
results as a basis for error correction. This workflow is illustrated Figure 4.2.

We have applied this method on the 244 classes of the DBPedia dataset. We give below
an example of pseudo-keys obtained for the class dbo:Person computed with a minimal
support λs = 0.2 and a discriminability threshold λd = 0.999. Table 4.1 shows computed
keys and their support.

The first row of this table indicates that there exist persons born on the same day who
also died on the same day, which is not impossible but statistically rare. A verification
can be performed by transforming pseudo-keys into SPARQL queries and executing them
on the dataset.

The query must check what the resources have the same values for properties in the
key for the given class.
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Figure 4.2: Error detection using keys: workflow

Properties of the key Support
http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/birthDate 0.203
http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/deathPlace 0.216
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/ontology/birthPlace 0.442
http://xmlns.com/foaf/0.1/surname
http://purl.org/dc/elements/1.1/description 0.459
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/ontology/birthDate 0.480

Table 4.1: Key detection for the class DBPedia:Person.

We obtain the following query for the key (dbo:birthPlace, dbo:deathPlace):

SELECT DISTINCT ?x ?y
WHERE {

?x dbo:deathDate ?dp1;
dbo:birthDate ?dp2;
rdf:type dbo:Person.
?y dbo:deathDate ?dp1;
dbo:birthDate ?dp2;
rdf:type dbo:Person.

MINUS {
?x dbo:deathDate ?dpx1;
dbo:birthPlace ?dpy1 .
?x dbo:deathDate ?dpx2 ;
dbo:birthPlace ?dpy2 .
FILTER (?dpx1=?dpy1)
FILTER (?dpx2=?dpy1)

}
FILTER (?x!=?y) }

In this example, the MINUS query pattern is not required because dbo:birthDate and
dbo:deathDate are single-valued properties. But in case of multivalued properties this
operator is needed.

Manual analysis of the query results1 shows the 124 instances pairs returned by the
query in fact correspond to diverse types of errors in the dataset. The first kind of
errors arises when two resources exist for describing a same object, for example dbpe-
dia:Louis IX of France Saint Louis 1 and dbpedia:Louis IX of France

1Query executed on the DBPedia SPARQL endpoint http://dbpedia.org/sparql

http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/deathDate
http://dbpedia.org/ontology/deathPlace
http://xmlns.com/foaf/0.1/name
 http://dbpedia.org/ontology/birthPlace
http://xmlns.com/foaf/0.1/surname
http://purl.org/dc/elements/1.1/description
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/sparql
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Class duplicate misclassification other
dbpedia:Person 31 75 16

Table 4.2: Repartition of errors in the DBPedia class dbo:Person

A second kind of errors seems to be caused by the infobox extraction process when gener-
ating DBPedia. These errors most of the time lead to resource misclassification problems.
For example: dbpedia:Timeline of the presidency of John F. Kennedy is classified as a person
although it is in fact a timeline.

Finally, a third kind of errors come from Wikipedia inconsistencies between the infobox
and the article2 or from documents from which these articles were informed.3
Table 4.2 below shows error distribution for the class dbo:Person.

This method can be reproduced on any dataset without any prior knowledge of the
data.

Conclusion

One solution to data interlinking relies on keys. However such keys are usually not provided
and thus they need to be discovered from data. We have proposed an algorithm for
computing keys and pseudo-keys in RDF graphs. The algorithm is efficient, even on large
datasets thanks to pruning techniques based on measures of support and discriminability.

We have demonstrated the benefits for such an algorithm in two applications: datasets
interlinking and duplicates and error detection in data. Error detection allows to efficiently
detect duplicates or correct errors on DBPedia persons.

4.3 Link key discovery

In the previous section, we showed that data interlinking can be done using key pairs
linked by alignments. However, it may happen that no alignment is available, or there is
no common key between datasets. Following our key-based approach to data interlinking,
we sought a way to minimize the required input as much as possible. This gave rise to
the notion of link key that generalise the combination of keys and ontology alignments for
data interlinking (Euzenat and Shvaiko, 2013; Atencia, David, and Euzenat, 2014a).

A link key is composed of two sets of pairs of properties and a pair of classes. The
two sets allow for distinguishing between the intersection (shortened in-) and equality
(shortened eq-) parts of a link key, as it is as been done for keys (Atencia, Chein, et al.,
2014). An example of a link key is:

{⟨auteur, creator⟩}{⟨titre, title⟩} linkkey ⟨Livre, Book⟩

This link key states that whenever an instance of the class Livre has the same values for
the property auteur as an instance of the class Book has for the property creator and they
share at least one value for their properties titre and title, then they denote the same entity.

2See for example http://dbpedia.org/resource/Phromyothi_Mangkorn and http://
dbpedia.org/resource/Kraichingrith_Phudvinichaikul

3See for example http://dbpedia.org/resource/Merton_B._Myers and http://dbpedia.
org/resource/William_J._Pattison and the footnote at the end of these articles.

http://dbpedia.org/resource/Phromyothi_Mangkorn
http://dbpedia.org/resource/Kraichingrith_Phudvinichaikul
http://dbpedia.org/resource/Kraichingrith_Phudvinichaikul
http://dbpedia.org/resource/Merton_B._Myers
http://dbpedia.org/resource/William_J._Pattison
http://dbpedia.org/resource/William_J._Pattison
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D D′

⟨a1, p1, v1⟩ ⟨a2, p2, v4⟩ ⟨b1, q1, v1⟩ ⟨b2, q2, v2⟩
⟨a1, p2, v2⟩ ⟨a2, p3, v5⟩ ⟨b1, q2, v2⟩ ⟨b2, q2, v4⟩

⟨a2, p1, v3⟩ ⟨b2, q1, v1⟩ ⟨b2, q3, v5⟩

Table 4.3: Two sets of triples representing datasets D and D′

⟨p1, q1⟩ ⟨p2, q2⟩ ⟨p3, q3⟩
⟨a1, b1⟩ × ×
⟨a1, b2⟩ × ×
⟨a2, b2⟩ × ×

Table 4.4: Context build from data given on the example of Table 4.3.

Unlike keys, this link key could be directly used to interlink the books of English and
French libraries without the need of any ontology alignment.

From their introduction in (Atencia, David, and Euzenat, 2014a), we have studied
different facets of link keys: their extraction, selection, combination and semantics.

(Atencia, David, and Euzenat, 2021) studied the semantics of link keys and their
relations with keys. It especially shows that link keys cannot be reduced to pairs of keys
related by alignment. In this work, we define three different types of link keys: weak, plain
and strong link keys. They all allow to find links between two datasets, but they differ
on whether they allow the existence of different resources (duplicates) satisfying the key
conditions within each of the datasets: weak link keys allow them; plain link keys allow
them only among the non-linked resources; strong link keys disallow them all.

Extraction algorithms

All algorithms for link key extraction focus on discovering weak link keys. The first
algorithm (Atencia, David, and Euzenat, 2014a) only focused on weak in-link keys but as
been then extended for discovering also weak eq-link keys.

The original algorithm consisted in extracting all the sets of pairs of properties for
which instances share at least one value and that are maximal for at least one instance
(Atencia, David, and Euzenat, 2014a). These set of pairs of properties has been named
link key candidates and are evaluated thanks to measures discussed in Section 4.3. For
instance, from the datasets given Table 4.3, the algorithm builds a context given Table 4.4
from which link key candidates {⟨p1, q1⟩, ⟨p2, q2⟩} and {⟨p1, q1⟩, ⟨p2, q2⟩} can be directly
derived.

Thanks to commonalities with functional dependencies extraction in formal concept
analysis (FCA), we formalized the extraction of link keys with this framework (Atencia,
David, and Euzenat, 2014b), and then extended it to deal with non functional properties
(Atencia, David, Euzenat, et al., 2020). Link key discovery based on FCA yields to a
lattice in which the intent of concepts are the link key candidates and the extents are
the set of links generated by the link key candidate. For instance, from the context given
Table 4.4, FCA builds the lattice given Figure 4.3. Apart the top and bottom concepts,
we can see that the link key candidate represented by the concept with intent ⟨p2, q2⟩ was
not present with the original algorithm. The set of link key candidates extracted by FCA
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⟨a2, b1⟩

⟨p1, q1⟩
⟨a1, b1⟩, ⟨a1, b2⟩

⟨p3, q3⟩
⟨a2, b2⟩

⟨p2, q2⟩

A × A′

Figure 4.3: Lattice obtained from the formal context given Table 4.4.

is a super set of those obtained with the original algorithm since the resulting lattice is
closed by intersection.

Until now, we have studied the extraction of independent link keys. However, a link
key may be composed of some object properties that also refer to instances that have to
be linked. For instance, on the example of Figure 4.4, we can see that a link key candidate
composed of the pair ⟨o1:owner, o2:ownedBy⟩ requires the instances of both class o1:Person
and o2:Inhabitant to be identified and hence depends on some other link key.

o1:Person

o1:z1

o1:z2

o1:z3

o1:House

o1:h1

o1:h2

o1:h3

o2:Inhabitant

o2:i1

o2:i2

o2:i3

o2:Place

o2:a1

o2:a2

o2:a3

Dupont

Thomas

Dubois

Lisa

Grenoble

Paris

o1:lastname

o1:lastname

o1:lastname

o1:firstname

o1:firstname

o1:firstname

o2:given

o2:given

o2:given

o2:name

o2:name

o2:name

o1:owner o2:ownedBy

o1:city

o1:city

o1:city

o2:city

o2:city

o2:city

Figure 4.4: Two datasets representing instances of class House, resp. Place, that are in
relation through the owner property, resp. ownedBy, with instances of class Person, resp.

Inhabitants.

For this reason, we have also formalized, in (Atencia, David, Euzenat, et al., 2020), the
extraction of dependant link keys within the framework of Relational Concept Analysis
(RCA (Rouane-Hacene et al., 2013)) where relations between objects can be explicitly
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handled.
All the algorithms presented so far discover link key for a given pair of classes. If no

classes are given, then the discovery is performed on the whole graphs without considering
particular classes. In (Abbas et al., 2020), we have proposed a first formalization of link
key discovery thanks to Pattern Structures, an extension of FCA dealing with complex
data such as numbers, trees, and graphs (Ganter and Kuznetsov, 2001). In this work, all
components of link keys are represented: not only the pairs of properties, but also the
class expression covering all the instances of the descriptions. These class expressions are
disjunctions of conjunctions of named classes. This allows to build a lattice where intents
represent fully a link key candidate, i.e. the sets of pairs of properties and also the pair of
class expressions associated to the link key.

Evaluation measures

Link key extraction algorithms are exhaustive and discover all link key candidates that
hold on a given pair of datasets. Among all these candidates not all of them may be valid
link keys because they can either be too general/specific or be due to chance. Thus criteria
for selecting only the best candidate are needed.

We follow the idea that the quality of link key candidates only depends on the set
of links that it generates. When reference links are available, the quality of a link key
can be naturally evaluated thanks to precision and recall. However, this is only possible
in controlled evaluation scenarii, and in general the set of reference links does not exist.
Hence we have made, again, the distinction between two cases: supervised when some
sample of links are available, and unsupervised when there is no link.

In the supervised scenario, we assume the existence of a partial reference sets of
owl:sameAs and owl:differentFrom links. Then, the estimators of precision and recall can
be computed by restricting the computation to links that are common to the link key
candidate and the partial reference. When only owl:sameAs links are given, a reasonable
solution is to generate owl:differentFrom links by making the Unique Name Assumption on
the instances linked by owl:sameAs.

In the unsupervised case, when no reference links are given, we have defined the
measures of discriminability and coverage (Atencia, David, and Euzenat, 2014a). These
measures make the Unique Name Assumption on each of the datasets. Then the discrim-
inability measures how close is the set of links from a one-to-one mapping and the coverage
measures the ratio of instances that are covered by the link key candidate. On the lattice
of link key candidates, these measures are monotonic/antimonotonic: the more the link
key candidate is general, the higher will be the coverage, and the more specific the link
key is the higher will be the discriminability. However, in the case of a lattice of link key
candidates with their associated pairs of classes, the coverage normalised by the size of
the class is not monotonic any more (Abbas et al., 2020).

In (Atencia, David, and Euzenat, 2014a), we experimentally observed that these mea-
sures select the best candidates in both the supervised and non supervised case. They are
also robust to mistakes in the data sets and sample links. This setting is well suited for
finding one-to-one sets of links.

Combining link keys

One single link key, even the best one, may not be enough to discover all links in certain
data sets. This is simply the case of data sources covering different concepts. This may
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also be useful if the data related to a particular class is the result of aggregating different
sources that use different properties: there may be different ways to generate links. Thus,
instead of selecting one single best link key candidate, it could be worth selecting the
best combination of link key candidates, as it is already done for other link specifications
(Sherif et al., 2017).

We addressed the specific problem of extracting boolean combinations of link key
candidates from two RDF data sets (Atencia, David, and Euzenat, 2019). We defined
conjunction and disjunction of link keys in terms of their generated links and we shown
that conjunction does not generate any link that single link key candidates do not generate
already. So we focus on extraction of disjunctions of link key candidates. This is chal-
lenging because of the large number of non redundant disjunctions of link key candidates
(potentially 2n where n is the number of link key candidates).

Since an exhaustive enumeration of all non redundant disjunctions of link key is pro-
hibitive, we proposed two strategies for searching them. Both strategies represent the
search space as a lattice of antichains of link key candidates.

The top-k strategy selects the top-k candidates according to some evaluation measure
and then performs an exhaustive enumeration of disjunction on this selection. This as-
sumes that the best disjunctions are those which only contain the best link key candidates.

The expand-best strategy performs a best-first search. It explores the disjunctions from
the best individual link key candidates and by iteratively replacing the best disjunction
by its expansion, i.e. the set of disjunction obtained by adding another individual link key
candidate. At each step, a disjunction is selected only if it is better than those explored
thus far. The process stops after x iterations without any improvement. It assumes that
the better a disjunction is, the more chances that it can produce better disjunctions.

We evaluated these two strategies experimentally on eight different tests sets. Overall,
our hypothesis was confirmed: disjunctions of link keys bring an improvement to data
interlinking with respect to single link keys. The experimental results show that the
top-10 strategy always allows to find a disjunction better than the best single link key
candidate. In addition, the expand-best strategy always generates longer disjunctions than
the top-10 strategy. Consequently, the expand-best strategy favours recall over precision.
Furthermore, top-10 scales better than expand-best.

We also observed that the harmonic mean of discriminability and coverage, that we
use for selecting disjunction, was not optimal in the sense that some generated link key
candidates are better in terms of F-measure than those selected by our measure. This is
especially true if the data sets are very different in size (number of instances) and when
the target link set is far from a one-to-one mapping.

4.4 Conclusions and perspectives

This chapter summarizes the main contributions that we made on data interlinking. We
have started with the extraction of pseudo-keys from RDF data and we have generalized
them by proposing the notion of a link key. We have studied link keys thoroughly: their
discovery from data, their evaluation and their semantics.

We have defined three semantics of link keys: full, plain and weak link keys. We have
compared them with the corresponding key notions and show that they generalize pair of
keys related by alignment.

On the discovery side, we have developed a first algorithm that extracts link key
candidates from data. We have then proposed an FCA model for their extraction, and
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have extended it, with RCA, to the discovery of interdependent link keys. Since these
algorithms do not identify the pair of classes associated to a link key, we have extended
the formalization with pattern structure in order to also extract their associated class
expressions.

The quality and validity of extracted link key candidates has to assessed. We considered
both supervised and unsupervised evaluation. In particular, we have proposed metrics of
link key coverage and discriminability for unsupervised evaluation. Experimental results
have shown that coverage and discriminability are good and robust quality indicators.

When data are noisy, extraction produces many similar variations of link key candi-
dates. If one wants to analyse manually the set of candidates, using only discriminability
and coverage to rank them is not satisfactory because they could be a lot of similar can-
didates. We have thus studied how to reduce the set of candidates. A first proposition
has been to detect those that have the same closure of links w.r.t. owl:sameAs semantics,
thanks to partition pattern structures. Experimental results show that this does not re-
duce sufficiently the number of candidates. Recently, we have relaxed the link set equality
in order to select representative candidates. Our method consists in selecting medoids
within clusters obtained by hierarchical agglomerative clustering.

We are convinced that link keys present significant advantages for data interlinking.
First, they can be extracted using unsupervised algorithms that minimize the input: only
a pair of RDF graphs is required, there is no need to provide correspondences between
classes or properties, there is no need to choose a particular distance to compare values.
Link keys are a symbolic model that can be interpreted at the difference of embeddings or
neural network models. We have defined a semantics allowing to reason with it: links are
consequence of them, their satisfiability and consistency can be checked (Atencia, David,
and Euzenat, 2021).

This work can be pursued and extended in several directions. First, we plan to gen-
eralize extraction algorithms to the different semantics of link keys. So far, we focus on
extracting weak link key candidates. But one could generalize our extraction algorithm
to the other semantics of link key thanks to partition pattern structures and their exten-
sion to tolerance relation (Baixeries et al., 2018). In fact, links generated by a link key
candidate form a tolerance relation over the instances (of both datasets). It can be shown
that the tolerance relation of weak link key includes those of the corresponding plain link
key which itself include that of full link key. We can then define a sup-preserving map
on the link key candidate lattices that allows to identify the different kinds of link keys.
Furthermore, modeling link key extraction with tolerance relation and pattern structure
would allow us to integrate similarities between properties values.

Another application of our results is the cross dataset link prediction (or knowledge
base completion). Knowledge base completion automatically predicts missing facts by
exploiting information already present in the knowledge base. In the recent years, many
contributions are dedicated to that task. Most of them are based on knowledge graph
embeddings (Wang et al., 2017). Some more recent works address this challenge using
symbolic approaches based on rules (Meilicke, Chekol, et al., 2019) or (Ferré, 2021). We
think that FCA-based method to link key candidate discovery could complement rules
based approaches to knowledge completion by exploiting cross-dataset knowledge. Since
link key candidates are FCA concepts, minimal generators can be enumerated and im-
plications or association rules can be computed from them (Lakhal and Stumme, 2005).
Such a rule could have the form:

{⟨auteur, creator⟩}{⟨titre, title⟩} linkdep ⟨Livre, Book⟩ → ⟨annee, year⟩
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stating that whenever an instance of the class Livre has the same values for the property
auteur as an instance of the class Book has for the property creator and they share at least
one value for their properties titre and title, then they share a value for their properties
annee and year. This principle, that shares similarities with matching dependencies in
databases (Song and Chen, 2009), could be used to complete a graph with the data of
another one.





Chapter 5

Conclusions and perspectives

5.1 Summary of contributions

My work mainly addressed the challenge of dealing with knowledge heterogeneity in the
semantic web. My goal has not been to reduce heterogeneity but to facilitate knowledge
exchange in such an environment. Indeed, I believe that it is important that knowledge be
diverse and varied in order to better adapt to different problems. To fill the gap between
knowledge structures, we rely on “glue knowledge”: alignment between ontologies, and
links and link keys between instances.

My contributions mainly focus on measures for the comparison of knowledge structures,
but I have also developed techniques that extract new knowledge by comparing structures.
In particular, I am interested in ontologies, alignments and instances.

Ontologies. Different ontologies can share similar concepts. We have addressed the
comparison of ontologies by proposing and evaluating distance measures between ontolo-
gies. We considered two spaces: the ontology space and the alignment space. We proposed
original measures grounded on various bases such as relational structure, ontology seman-
tics, or natural language. From such measures, it is possible to be aware of the redundancy
or gaps lying behind heterogeneity. We have shown through experiments that the measures
are relevant and correlated even if they do not rely on the same bases.

Alignments. The comparison of alignments is mainly used for the evaluation of
ontology matchers. We have studied both extrinsic evaluation, which uses a gold standard,
and intrinsic evaluation, which is based only on the ontologies and the alignment to be
evaluated. In the framework of extrinsic evaluation, our approach combines both semantic
and relaxed evaluation models. These measures take into account the specificity of the
alignments and make it possible to overcome the limits of the classically used evaluation
model. Very few work have addressed the difficult case where no gold standard exists.
In this intrinsic evaluation context, we have introduced inclusion and exclusion measures
allowing to guess the quality of alignments. In both cases, we took advantage of the
semantics of aligned ontologies and proposed original measures grounded on algebra of
relations.

Instances. The same entity can be represented in several graphs using different on-
tologies. The task of identifying instances across ontologies is called data-interlinking. We
developed symbolic approaches to data interlinking that take the semantics into account.
We have introduced the notion of pseudo-key in RDF graphs and we have then generalized
it to link keys. While pseudo keys are defined on one data set, link keys are cross data
sets axioms. In both cases we have developed algorithms for their discovery from data
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and design quality measures ordering them according to their accuracy. We have shown
experimentally that our discovery algorithms can scale to large datasets and give accurate
results.

5.2 Perspectives

My research has targeted so far the comparison of static knowledge structures. However,
knowledge needs to evolve in response to changes that happen in the modelled domain
or for correcting errors. Evolution of knowledge encompasses many different challenges
such as ontology evolution and versioning (Flouris et al., 2008; Zablith et al., 2016),
ontology learning (Buitelaar et al., 2005; Lehmann and Hitzler, 2010), or knowledge graph
refinement (Paulheim, 2017).

Most of the methods for knowledge evolution focus on a particular structure: ontology,
instances, alignment, etc. Based on our expertise in ontology alignments and data linking,
we want to study the co-evolution of knowledge. We think that the dynamics and evolution
of knowledge relies on the relations between different representations. Moreover evolving
one side without caring of the others is prone to bring incoherence.

In particular, we plan to address the following research questions:

1. How can ontologies enrich mutually while maintaining their diversity? In particular,
it would be a question of studying how some axioms of an ontology can be integrated
in another one without merging them. Indeed, two ontologies on the same domain
can have divergences because they deal with different applications.

2. How can ontologies evolve using incremental learning strategies? The idea is to see
how changes on instances can influence the axioms of an ontology. Extending our
work on key extraction, we aim at discovering other types of axiom patterns and
inducing changes by analysing how the quality indices of extracted axioms evolve
over time.

3. How to measure knowledge evolution globally? The design and evolution of ontolo-
gies like those of DBpedia, Yago, Schema.org have influenced each other. Following
the approach of evolution of species, we aims at providing metrics that help to
understand this co-evolution and allow to build phylogenetic trees of ontologies.

All these questions are related to the research project of the mOeX team that ambi-
tions to understand and develop general mechanisms by which a society of agents evolves
its knowledge. Thanks to the combination of cultural evolution methods, multi-agent sim-
ulation and knowledge representation, the team studies how agents can adapt and evolve
their knowledge, and if evolution can preserve knowledge diversity.

My approach to address the aforementioned questions will not necessarily be based
on multi-agent simulation of games, but we are interested by the principle of continuous
and smooth evolution developed by cultural knowledge evolution. This is an opportunity
to study if observations made from simulation are supported by existing knowledge and
how adaptation mechanisms studied in this field can be applied to real knowledge graphs.
More generally, we are interested in symbolic knowledge learning using few examples but
based on existing knowledge to validate or even try to perform some analogical reasoning.
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Mutual enrichment of ontologies

Two ontologies of the same domain can express different knowledge and this diversity allow
them to be mutually enriched. Indeed, there are several reasons to preserve diversity
between knowledge representations and not to merge them. Diversity allows a better
resilience to changing needs. Moreover, software based on ontologies of the same domain
can have different perspectives and thus different conceptualizations of knowledge.

When enriching ontologies, it is difficult to find a trade-off between introducing new
knowledge without inconsistencies and resolving inconsistencies without removing the
added knowledge. In order to address this problem, we need to be able to identify pre-
cisely differences between ontologies and integrate those that are compatible with their
respective existing knowledge. Simple alignments, as considered by the vast majority of
works, are limited to the identification of common concepts and lack expressiveness to
accurately identify differences between ontologies. We therefore need complex alignments
that can express the description of a concept of one ontology from the vocabulary of the
other.

There exists relatively few methods for discovering complex alignments between ontolo-
gies (Thiéblin, Haemmerlé, Hernandez, et al., 2020). We propose to exploit the duality be-
tween concept description and their extension because they offer more guarantee regarding
consistency. To that extent association rules based methods (David, Guillet, et al., 2007;
Zhou et al., 2019) extracting alignments pattern in the form ∀x, A(x) ⊑ B(x) ∧ C(x) ∧ ...
are suitable.

The approach will consist in extracting axioms from ontologies and complex align-
ments. Some of them can be directly derived from complex correspondences but one can
also integrate aligned axioms by following the inclusion measure approach presented in
Section 3.3. The choice of axioms should preserve both consistency and diversity. If either
revision should be applied because of inconsistency, we should be sure that diversity is
preserved. Expected results are specialised methods for the extraction, the selection, and
the adaptation of axioms to integrate.

Incremental ontology evolution

There are several actively maintained knowledge graphs such as DBpedia, Yago, or Wiki-
data that evolve their data regularly. While changes mainly happen at the level of instances
(creation, property value change, etc.), they affect more rarely the ontologies. This can be
explained because changes at the level of the ontologies are more critical and complex to
implement than those at the instance level. However ontologies also have to be adapted
to better reflect the reality, if ontologies do not evolve, the knowledge will become obso-
lete and die. It therefore seems important to us to be able to anticipate the evolution of
ontologies based on the dynamics of the data.

Ontology evolution from instances, also called data-driven change discovery, mostly
rely on ontology learning methods (Lehmann and Hitzler, 2010; Mädche, 2002). These
methods have not been especially designed to make ontologies evolve and thus they do
not take existing ontologies into account. Furthermore, learning methods often require a
large number of instances to statically assess the quality of extracted patterns. Only one
work has focused specifically on learning ontology evolution from instances (Säıs, Pruski,
et al., 2017).

Our approach to handle the problem will take advantage of both symbolic data-mining
methods, ontologies, and adaptation operators. The use of symbolic data mining ap-
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proaches, such as those based on FCA or RCA, is suitable because they are not restricted
to frequent patterns. The role of the ontology to evolve will also be central because it will
guide the extraction and can guess the quality of extracted axiom thanks to consistency.
To design adaptation operators, several directions have to be investigated and combined
both at the experimental and theoretical levels. They may be extracted from ontology
versioning logs or inspired by those studied in cultural knowledge evolution (Euzenat,
2017; Bourahla, Atencia, et al., 2021) for instance. Their properties can follow some of
the principles of belief revision such as AGM postulates (Alchourrón et al., 1985), and
studied through dynamic epistemic logics (van den Berg et al., 2021).

We expect that combining such extraction methods and ontological knowledge will
allow to learn accurately from relatively little amount of data. Another achievement will
to be able to enhance the global quality of knowledge graphs. Indeed, we expect that
axioms discovered by such methods will help to detect exceptions in data that represent
errors to be corrected.

Measuring knowledge co-evolution

Measuring the evolution of knowledge is essential in many aspects. It can provide insights
into the evolutionary dynamics of a knowledge graph and answer many questions such as:
Are the graph data up to date? Is the knowledge of the ontology stable, does the graph
become more similar to other knowledge structures over time?, etc. Even if the first two
questions can be partially answered by analyzing the evolution of a single graph, their
joint analysis would allow to obtain more precise answers.

In the literature, measures of knowledge evolution are only concerned with changes in
the same structure. For instance, (Pernisch et al., 2021) considered measuring the impacts
of changes between versions of ontologies. In (Orme et al., 2007), authors studied if the
evolution of standard complexity and cohesion metrics can capture changes and how they
can reflect the stability of an ontology over time. None of these works addressed the
evolution of ontologies globally in relation with the other knowledge structures.

Our approach for measuring global knowledge evolution takes inspiration from phylo-
genetics. Indeed, knowledge representations evolve over time like biological organisms and
representations can share common ancestors like DBPedia, Yago, Google KG which both
use informal knowledge from Wikipedia. Phylogenetics proposes several tools for analysing
the evolution. For instance, phylogenetic inference methods allow to build phylogenetic
trees from data traits. Several different trees can be built, each of them representing a
particular hypothesis about the evolution of genes or species. By conjointly exploiting
our expertise on ontology measures (see Chapter 2), alignments, and classification meth-
ods, we could test different hypothesises of the evolution of knowledge. Considered traits
can be, for instance, textual annotations, common instances, shared axiom or structural
similarity. From such structures, we will define original measures quantifying the diver-
sity (Tucker et al., 2016) or the stability of knowledge over time. We expect to apply
these measures in the context of cultural knowledge evolution for controlling these aspects
during simulations.



Appendix A

The OntoSim library

This work on distances between ontologies has yield the OntoSim Library 1. We have
designed this library in order to be extensible and we have implemented all the measures
presented in (David and Euzenat, 2008a) and (David, Euzenat, and Sváb-Zamazal, 2010).
This software is written in Java, is quite independent of the ontology API (JENA or OWL
API) and is connected to the Alignment API.

OntoSim is based on a minimal but generic Measure interface that a concrete class
has to implement:
public interface Measure<O> {

static enum TYPES {similarity, dissimilarity, distance, other};

public TYPES getMType();
public double getMeasureValue( O o1, O o2);
public double getSim( O o1, O o2);
public double getDissim( O o1, O o2);

}

OntoSim is provided with two vector space measures (boolean and TF · IDF ), four
concept-based measures and four alignment space measures. In addition, the framework
can embeds external similarity libraries which can be combined with our owns.

It also provides various tools for creating new concept-based measures that combine val-
ues from a matrix. This is materialized by the SetMeasure interface that is parametrized
by a local Measure, and Extractor, and an AggregationScheme. In particular, we
have implemented various extractors such as basic thresholding, max, min, max-min, sta-
ble marriage, Hungarian algorithm and also different kinds of aggregation schemes such
as generalized mean or weighted sum.

This software has been designed to facilitate its extension and its integration by other
tools, such as matchers, through its API. It is freely available under LGPL 2.1.

1https://gitlab.inria.fr/moex/ontosim/
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Appendix B

Linkex: Link key extraction tool

All our work on discovery algorithms and link key quality measures, except the RCA
algorithm for dependent link keys extraction, are implemented in the Linkex tool1, written
in Java.

This tool takes as input two RDF datasets given as files in Turtle, RDF/XML or
NTriple format and outputs the extracted link key candidatesin the Alignement API
EDOAL format.

The link key extraction procedure consists of the following steps:

1. The indexation and preprocessing of RDF datsets;

2. The construction of the set of descriptions that associates for each pair of instances,
the sets of pair of properties for which the instances share at least one value or all
values;

3. The computation of the lattice of link key candidates (with a modified version of the
addIntent algorithm (Merwe et al., 2004));

4. The quality evaluation of candidates;

5. The rendering of candidates.

During the indexation phase, values are normalized in order to reduce their heterogene-
ity. The transformation consists in (1) removing diacritics, (2) tokenizing (using sequence
of non digit or letter as separator), (3) sorting the resulting bag of token. Linkex allows to
take into account composition of properties (and inverse properties). Properties can also
be filtered using a minimal support and/or a discriminability threshold.

The resulting link key candidates can be rendered in EDOAL2, but also in a special
text format where each link key is associated with several quality measure values or as a
GraphViz dot file representing the lattice.

1https://gitlab.inria.fr/moex/linkex
2https://moex.gitlabpages.inria.fr/alignapi/edoal.html
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Ferré, Sébastien (2021). “Application of concepts of neighbours to knowledge graph com-
pletion”. In: CODATA Data Science Journal 4.1, pp. 1–28. doi: 10.3233/DS-
200030. url: https://hal.inria.fr/hal-03531781.

Flouris, Giorgos, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis,
and Grigoris Antoniou (2008). “Ontology Change: Classification and Survey”. In:
Knowledge Engineering Review 23.2, pp. 117–152. issn: 0269-8889. doi: 10.1017/
S0269888908001367. url: https://doi.org/10.1017/S0269888908001367.

Ganter, Bernhard and Sergei O. Kuznetsov (2001). “Pattern Structures and Their Projec-
tions”. In: Proc. 9th International Conference on Conceptual Structures (ICCS 2001).
LNCS 2120. Springer, pp. 129–142.

Group, W3C OWL Working (2012). OWL 2 Web Ontology Language Document Overview
(Second Edition). Tech. rep. W3C. url: https://www.w3.org/TR/owl2-
overview/.

Heath, Tom and Christian Bizer (2011). Linked Data : Evolving the Web into a global data
space. doi: 10.2200/S00334ED1V01Y201102WBE001. Morgan and Claypool.

Hogan, Aidan, Antoine Zimmermann, Jürgen Umbrich, Axel Polleres, and Stefan Decker
(2012). “Scalable and distributed methods for entity matching, consolidation and dis-
ambiguation over linked data corpora”. In: Journal of Web Semantics 10, pp. 76–110.

Hong, Lu and Scott Page (2004). “Groups of diverse problem solvers can outperform groups
of high-ability problem solvers”. In: Proceedings of the national academy of sciences
101.46, pp. 16385–16389.

Horridge, Matthew and Peter Patel-Schneider (2012). OWL 2 Web Ontology Language.
Manchester Syntax (Second Edition). url: http://www.w3.org/TR/owl2-
manchester-syntax/ (visited on 03/15/2015).

Hu, Bo, Yannis Kalfoglou, Harith Alani, David Dupplaw, Paul Lewis, and Nigel Shadbolt
(2006). “Semantic Metrics”. In: Proc. 15th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW). Vol. 4248. Lecture notes in computer
science. Praha (CZ), pp. 166–181.
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Vassalos. Athens, Greece.

https://doi.org/10.3233/DS-200030
https://doi.org/10.3233/DS-200030
https://hal.inria.fr/hal-03531781
https://doi.org/10.1017/S0269888908001367
https://doi.org/10.1017/S0269888908001367
https://doi.org/10.1017/S0269888908001367
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
https://tel.archives-ouvertes.fr/tel-01366032


BIBLIOGRAPHY 59
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ble 1.

van den Berg, Line, Manuel Atencia, and Jérôme Euzenat (2021). “A logical model for the
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