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1

Introduction

These are the lecture notes of a renewed course on semantics of distributed knowledge.
If, for once, I would be able to produce something not too long. . .

1.1 Knowledge, agents, communication, etc.

The goal of this course is to consider the semantics of distributed knowledge. That is, how to interpret and
exploit knowledge found in various independent locations. Its context is the diversity and independence of data
and knowledge sources in a modern interconnected world. A typical example is that of the wealth of machine-
processable information provided in the semantic web and linked data. Another example may be given by
several robots, physical or software, having acquired knowledge independently but expected to operate together.
This may also be thought of as a metaphor of our human, and may be later hybrid, society.

The text is considered from the standpoints of agents. Agents are any entities able to perceive their en-
vironment, learn knowledge from it and act in their environment, in principle according to their knowledge
(Figure 1.1). In the environment, there may be other agents and one specific aspect of perceiving and acting
on other agents is communicating. Agents may thus be computer systems interacting through networks, robots
evolving in the same space or animals and people. One important assumption considered here, called hetero-
geneity, is that agents do not know what is the knowledge of other agents and do not even assume that they are
made the same.
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Figure 1.1. Agents and their environment.

The questions that arise in such a context are those of the interoperability of such agents. How can they
operate together? Is their knowledge compatible? What knowledge do they have in common?

This course approaches such questions from several convergent perspectives which contribute answering
these questions. They hold together largely due to the model-theoretic semantics designed for defining the
meaning of artificial languages.



2 Introduction

These lecture notes may be considered as a guiding line for the development of interoperable heterogeneous
distributed knowledge systems. But above all, they are an invitation to apprehend rich and exciting research
directions whose developments would contribute to such systems.

It will quickly sketch various approaches to distributed knowledge representation and attempt at articulating
them as in the following jigsaw.
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1.2 Outline/Synopsis

The course may be thought of as considering the following questions:
1. How to interpret data and knowledge?
2. How can heterogeneous knowledge be reconciliated?
3. How to query heterogeneous and distributed knowledge sources?
4. How to revise distributed knowledge when it becomes inconsistent?
5. How to socially evolve shared knowledge?
6. How to model this as action in a dynamic epistemic logic?
from a semantic standpoint. This shapes the outline of this document.

First, we have to consider how agents represent knowledge and data. In order to be understandable, the way
these data are expressed has to be defined. This may consist of exposing the meaning of a column in a table or
a type of relation between entities. A typical way to do this is to use a logic for defining the vocabulary used
for expressing knowledge and describing data. Such a logic, through its semantics, supports reasoning engines
whose inferences can be shown correct and/or complete. Chapter 2 introduces logical languages developed in
the semantic web area for expressing knowledge and data.

However, different agents, designed autonomously, may use different vocabularies. This is perfectly justi-
fied as they may have had different experiences and they may deal with different problems in different envi-
ronments. This heterogeneity may prevent a specific agent to interpret knowledge and data communicated by
another one; think about an unknown foreign language. In order to solve this problem, it is possible to align
these vocabularies by identifying which term in one language is equivalent to or more general than another one.
This way, it is possible for one agent to interpret foreign knowledge. Alignments, gathering such relations, are
also given a semantics allowing to increase the consequences deductible from the local knowledge. Chapter 3
describes a small language for expressing relations between logics and its semantics. This allows to create
networks of ontologies.

This local knowledge may be imported from neighbours or remain distributed and gathered when necessary.
The latter option is usually tackled through distributed querying. A query originating from one agent, may not
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be directly answerable by itself because it lacks some data. Such a query may be answered by combining the
knowledge of other agents. For that purpose, distributed query evaluation may be defined splitting the queries
in subparts translated through alignments and sent to neighbour agents. The semantics of such queries, and
hence the answers that it should provide, is also defined in function of that of the alignments and remaining
vocabularies. Chapter 4 discusses the different strategies by which a query may be distributively evaluated and
its semantics.

Within such a distributed framework, inconsistency may easily arise. In semantic terms, an inconsistency
means that the expressed knowledge cannot represent any ‘reality’: it has no model. It may arise locally on one
agent’s knowledge or result from the incompatibility between the distributed knowledge of agents. In order to
deal with this problem, belief revision operators are defined which attempt at restoring consistency, as soon as
it occurs, through the suppression of some axioms within agents’ knowledge or alignments. Chapter 5 provides
the bases of belief revision and show how it can be adapted to networks of ontologies.

However, if agents’ knowledge is not open to other agents, detecting inconsistencies when they occur is not
always possible. On the contrary, it is possible that agents with contradictory or incorrect knowledge are able to
interact in a satisfactory way for a long time before discovering such a problem. When this happens, they will
take measures to adapt their knowledge with operators akin revision operators. Depending of the way they do
it, it is interesting to observe how these local operators may shape the global and long term knowledge of the
agent population. Chapter 6 presents experimental cultural knowledge evolution as a way for agents to evolve
their knowledge through interacting with each other.

So far, we mostly considered the standpoint of a single agent connected to others and its behaviour: its
knowledge, its alignments with neighbours’ vocabularies, its queries, its adaptation. It is possible to seman-
tically apprehend the evolution of the knowledge of a population of agents taking an overlooking view over
the agents. This is the case of multi-agent dynamic epistemic logics able to express the knowledge and beliefs
of different agents and the way it can be communicated through dynamic operators. The semantic effects of
knowledge communication, such as belief revision, is embedded into the semantics of these operators. Chapter 7
introduces multi-agent dynamic epistemic logic and shows how to apply it to cultural knowledge evolution.

1.3 Lectures

When teaching this material, each chapter correspond to a three-hour session. In fact, Chapter 2 may take a bit
longer, but Chapter 3 and 4 being a bit shorter, it is possible to compensate or spend more time on practical
examples.

Each chapter ends with a few questions, that can be checked by the reader for understanding.
I try to provide assignments between each courses. Their purpose and structure are given in Appendix C.

1.4 Relation to previous courses

Our previous course provided a detailed account of all the technologies developed for the semantic web —data,
ontology and query languages— in all their generality and variations.

Here, on the contrary, the goal is to present the bare minimal material to keep the notions meaningful, still
general, yet simple. It aims at emphasising the connections between these notions, especially the connections
that are maintained by the semantics. Hence, I dropped generality and completeness for simplicity. I provide
minimum languages sufficient to understand problems at stake with the semantics aspect of distributing knowl-
edge.

The notes of this previous course1 are thus still relevant for those who want more details, but diverge largely
from what will be found in these current lecture notes.

1.5 Acknowledgements

I sincerely thank the students for their patience and numerous questions.
1 https://moex.inria.fr/teaching/sw/semwebsem.pdf

https://moex.inria.fr/teaching/sw/semwebsem.pdf


4 Introduction

Thanks to Line van den Berg and Manuel Atencia for parts of Chapter 7 and to Yasser Bourahla and Manuel
Atencia for some of the material I use when teaching Chapter 6.
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2

Semantics of knowledge representation

IN WHICH WE START REPRESENTING KNOWLEDGE ON COMPUTERS, FIRST INDEPENDENTLY — ASSESS-
ING MEANING TO THIS REPRESENTATION REQUIRES A SEMANTICS — THIS SOMETIMES REVEAL THAT OUR

KNOWLEDGE IS CONTRADICTORY, REDUNDANT OR MISALIGNED.

An agent may want to record and express data observed in its environment. Arguably, this data is more
useful if expressed in a regular way. This enables to identify categories of entities (e.g. Musicians, Composers,
Pieces of music) entertaining precise relations (e.g. composing, performing). Moreover, such categories and
relations may be further defined so that constraints hold them together (e.g. a composer has composed at least
one piece of music, if someone sings a song, then it performs a piece of music). This may achieved using
adequate languages.

Among humans, we use languages to communicate. A language is characterised by its syntax (lexicon
and grammar) and its semantics (what a statement means). The syntax defines which are the valid statements
(sometimes called well-formed formulas), the semantics if they are true or not.

For communicating with computers, we also use languages. A programming language is such a language.
Programming languages also have a syntax, hence syntax errors, and a semantics which may be a mathematical
denotation of programs, such as a mathematical function, or, at minima, the set of instructions the machine will
perform when executing it.

But there are many others. For instance, training a machine learning system, requires a language which
is made of statements. Each statement has two parts: an instance, e.g. a music file, and a label, i.e. the work
performed. The two parts of the statement are the syntax of the language. The meaning of this statement is that
the label is the expected output for, i.e. the work performed in, the instance.

In artificial intelligence, the field of knowledge representation defines languages for. . . representing knowl-
edge. They allow a computer program, or agent, to have a representation of the knowledge that it has about the
world, its goals, the other agents, etc. These representations will also be defined by providing a language and
its semantics. This is the classical way of defining a logic.

I use the term ‘knowledge’ liberally, and more specifically in the tradition of ‘knowledge representation’.
There are two ways of contrasting ‘knowledge’ to something else:
– In knowledge representation, ‘knowledge’ is distinguished from ‘data’. Hence, the emphasis is on opposing

general statements, e.g. ‘Composers compose pieces of music’ (‘knowledge’), to particular statements, e.g.
‘Thelonius Monk has composed “Ruby, my dear”’ (‘data’).

– In philosophy, ‘knowledge’ is distinguished from ‘beliefs’, and more precisely, knowledge is considered
as ‘true belief’. Hence, the emphasis is on the epistemological status of statements. For instance, one may
know that ‘John Coltane has played “Ruby, my dear”’, but only believe that ‘John Coltrane has composed
“Ruby, my dear”’.

Unfortunately, this course uses both acceptions.



8 2 Semantics of knowledge representation

2.1 Expressing data with RDF: syntax and semantics

The first language that we will consider is used for expressing things, or data. RDF means ‘resource description
framework’. It is the first language of the semantic web.

This is covered in a detailed form in [EUZENAT 2007, Chapter 2].

2.1.1 RDF Graphs

This is covered in a detailed form in [EUZENAT 2007, §2.2].

RDF can be expressed in a variety of formats. I use here its abstract syntax (triple format), which is sufficient
for most purposes, and its graphical notation, RDF graphs.

RDF has been designed to describe ‘resources’ through formal statements. Resources are roughly anything
that can be denoted by a IRI (in logic, a symbol). A resource may be a web page, may be a person, may be
a concept described by a web page (e.g. ‘singer’). It may be described by its class: ‘singer’ is a ‘musician’, a
‘person’, by its attributes, it has a ‘name’ or a ‘vocal range’.

RDF terminology

To define the syntax of RDF, we need to introduce the terminology over which RDF graphs are constructed.
This terminology is made of literals, like strings or numbers for describing entities, of names for naming

entities and of placeholders to denote entities without names. “Ruby, my dear” is a string, title is an entity,
this is a placeholder. ‘this has for title “Ruby, my dear”’ is a statement of RDF. Names correspond to logical
symbols and are identified by IRIs (Internationalized Resource Identifiers, e.g. dc:title), placeholders correspond
to variables ( :t1) and are called ‘blanks’ in RDF.

Definition 2.1 (RDF terminology [HAYES 2004]). The RDF terminology T is the union of three pairwise
disjoint infinite sets of terms:

– the set U of IRIs,
– the set L of literals, and
– the set B of variables.

The set V = U ∪L of names is called the vocabulary.

From now on, we use different notations for the elements of these sets: a variable will be prefixed by :
(like :b1) or expressed as :b1, a literal will be between quotation marks (like ”27”), and the rest will be IRIs
(like foaf:Person — foaf:1 is a name space prefix used for representing personal information — ex:friend or simply
friend). Because I want to stress the compatibility of the RDF structure with classical logic, I will use the term
variable instead of that of ‘blank’ which is a vocabulary specific to RDF.

To simplify notations, and without loss of generality, I do not distinguish here between simple and typed
literals.

2.1.2 RDF graphs as sets of triples

RDF graphs are sets of triples ⟨s, p, o⟩ constructed over IRIs, blanks, and literals [CARROLL and KLYNE 2004].
In such triples, s is called the subject, p the predicate and o the object.

Definition 2.2 (RDF graph). An RDF triple is an element of (U ∪B) ×U × T . An RDF graph is a finite set of
RDF triples.

The set of triples of Listing 2.1 makes the RDF graph G represented in Figure 2.1:

1 http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/
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d2 : g1 f o a f : name ” Ar t ” .
d2 : g2 f o a f : name ” John ” .
d2 : g3 f o a f : name ” Thelonius ” .

: t1 mo: composer d2 : g3 .
: t1 dc : t i t l e ” Ruby , my dear ” .

d2 : b1 mo: performed : t1 .
d2 : b1 mo: member d2 : g1 .
d2 : b1 mo: member d2 : g3 .
d2 : b2 mo: member d2 : g2 .
d2 : b2 mo: member d2 : g3 .
d2 : b2 mo: performed : t1 .

Listing 2.1. RDF graph G as triples.

G

d2:b1

d2:b2

:t1

d2:g1

d2:g2

d2:g3 ”Thelonius”

”John”

”Art”

”Ruby, my dear”

mo:member

mo:member

m
o:m

em
ber

m
o:

m
em

be
r

mo:performed

mo:performed

mo:composer

foaf:name

foaf:name

foaf:namedc:title

Figure 2.1. The RDF graph G of Listing 2.1.

Excluding variables as predicates and literals as subject was an unnecessary restriction in the RDF design,
that has been relaxed in RDF 1.1. These constraints complexify the syntax specification, and relaxing them
neither changes the RDF semantics nor the computational properties of reasoning. In consequence, we adopt
such an extension introduced in [TER HORST 2005] and called generalized RDF graphs, or simply GRDF
graphs.

Definition 2.3 (GRDF graph). A GRDF triple is an element of T × (U ∪B)×T . A GRDF graph is a finite set
of GRDF triples.

So, every RDF graph is a GRDF graph.
The set of triples of Listing 2.2 makes the GRDF graph (H) represented in Figure 2.2:

: g3 f o a f : name ” Thelonious ” .
: b1 mo: member : g3 .
: t1 : r e l : g3 .
: g1 f o a f : name :bnm .
: b1 mo: member : g1 .
: b1 mo: performed : t1 .

Listing 2.2. GRDF graph H as triples.

Intuitively, this graph means that there exists an entity named (foaf:name) ”Thelonious” who was member
(mo:member) of a group which performed (mo:performed) a tune to which it is related ( :rel).

A ground GRDF graph G is a GRDF graph with no variables, i.e. term(G) ⊆ V .
A GRDF graph can be represented graphically as a directed labeled multigraph ⟨N,E, γ, λ⟩ such that the

set of nodes N is the set of terms appearing as a subject or object in at least one triple of G, the set of arcs E
is the set of triples of G, γ associates to each arc a pair of nodes (its extremities) γ(e) = ⟨γ1(e), γ2(e)⟩ where
γ1(e) is the source of the arc e and γ2(e) its target; finally, λ labels the nodes and the arcs of the graph: if s is a
node of N , i.e. a term, then λ(s) = s, and if e is an arc of E, i.e. a triple (s, p, o), then λ(e) = p, i.e. if ⟨s, p, o⟩
is a triple, then s

pÐ→ o is an arc. When drawing such graphs, the nodes resulting from literals are represented
by rectangles while the other nodes are represented by rectangles with rounded corners.
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H

:b1

:t1

:g1

:g3

:bnm

”Thelonius”

mo:member

mo:member

m
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pe
rfo

rm
ed

:rel

foaf:name

foaf:name

Figure 2.2. The GRDF graph H of Listing 2.2.

For example, the GRDF triples given in Listing 2.2 can be represented graphically as in Figure 2.2.

In what follows, I do not distinguish between the two views of the RDF syntax (as sets of triples or directed
labeled graphs). I will then speak interchangeably about their nodes, their arcs, or the triples which make them
up.

2.1.3 RDF Semantics

This is covered in a detailed form in [EUZENAT 2007, §2.3].

The semantics of a language may be given by defining how to interpret expressions of the language. It
usually goes through providing a function which maps expressions to a particular domain. This function follows
rules according to the structure of the expressions, i.e. the interpretation of ‘the composer of this’ depends on
the interpretation of ‘composer’ and the interpretation of ‘this’.

Of course, a computer considering an expression usually has no way to decide what it denotes. So how can
it make the link with the real world? (Spoiler): it does not. The semantics does not tell what the interpretation of
an expression is, it tells how to interpret an expression. Thus, it considers all the possible interpretations (called
models) of a specific description of the world to decide what it entails. Of course, if the world is according to
the descriptions, it will be one of these models.

Simple entailment

[HAYES 2004] introduces several semantics for RDF graphs2. In this section, I present only the simple seman-
tics without RDF/RDFS vocabulary [BRICKLEY and GUHA 2004]. The semantics of RDF graphs is defined in
model theory. RDF is thus a proper logics. The definitions of interpretations, models, satisfiability, and entail-
ment correspond to the simple interpretations, simple models, simple satisfiability, and simple entailments of
[HAYES 2004], but could be reconsidered with respect to [HAYES and PATEL-SCHNEIDER 2014].

Interpretations

An interpretation describes possible way(s) the world might be in order to determine the truth-value of any
ground RDF graph. It does this by specifying the denotation of each IRI (and each literal). In addition, if a IRI
is used to indicate a property, it specifies which things in the domain are related by this property.

Interpretations that assign particular meanings to some names in a given vocabulary will be named from
that vocabulary, e.g. RDFS interpretations (§2.2). An interpretation with no particular extra conditions on a
vocabulary (including the RDF vocabulary itself) will be simply called an interpretation.

Definition 2.4 (Interpretation of a vocabulary). Let V ⊆ V = U ∪ L be a vocabulary, an interpretation of V
is a quadruple I = ⟨∆,P, [⋅], ⋅ι⟩ such that:

– ∆ is a set of resources that contains V ∩L;
– P ⊆∆ is a set of properties;
2 Retrospectively, a simpler semantics following strictly description logics may have been more inline with the goal to

simplify everything. It is likely that my admiration about the simple trick introduced by Patrick Hayes, led me to keep it.
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– ⟦⋅⟧ ∶ P → 2∆×∆ associates to each property a set of pairs of resources called the extension of the property;
– the interpretation function ι ∶ V →∆ associates to each name in V a resource of ∆, if v ∈ L, then vι = v.

This semantics has this peculiarity that predicates, which naturally corresponds to classical dyadic predi-
cates, may also be considered as resources. Hence, the triple ⟨rdf:type, rdf:type, rdf:Property⟩ is legitimate in RDF
and can be interpreted (it indeed means that rdf:type denotes a predicate). This is achieved by interpreting triples
in two steps: a first step (ι) associates a denotation to each IRI used and a second step (⟦⋅⟧) interprets those used
in predicate position as binary relations. This is the main peculiarity of the RDF semantics with respect to that
of first-order logics.

Models

The RDF semantics expresses the conditions under which an interpretation is a model for an RDF graph. The
usual notions of validity, satisfiability and consequence are entirely determined by these conditions.

Intuitively, a ground triple ⟨s, p, o⟩ in a GRDF graph will be true under the interpretation I if p is interpreted
as a property, s and o are interpreted as resources, and the pair of resources ⟨sι, rι⟩ belongs to the extension of
the property ⟦pι⟧. A triple ⟨s, p, ?b⟩ with the variable ?b ∈ B would be true under I if there exists a resource
?bι such that the pair ⟨sι, ?bι⟩ belongs to the extension ⟦pι⟧. When interpreting a variable node, an arbitrary
resource can be chosen. To ensure that a variable is always interpreted by the same resource, the interpretation
function is extended as follow.

Definition 2.5 (Extension to variables). Let I = ⟨∆,P, ⟦⋅⟧, ⋅ι⟩ be an interpretation of a vocabulary V ⊆ V ,
and B ⊆ B a set of variables. An extension of ι to B is a mapping ι′ ∶ V ∪B →∆ such that ∀x ∈ V , xι

′ = xι.

An interpretation I is a model of a GRDF graph G if all triples are true under I .

Definition 2.6 (Model of a GRDF graph). Let V ⊆ V be a vocabulary, and G be a GRDF graph such that
every name appearing in G is also in V (V(G) ⊆ V ). An interpretation I = ⟨∆,P, ⟦⋅⟧, ⋅ι⟩ of V is a model of G
if there exists an extension ι′ of ι to B(G) such that for each triple ⟨s, p, o⟩ of G, pι

′ ∈ P and ⟨sι′ , oι′⟩ ∈ ⟦pι′⟧.

L U BV T

P

∆

L

ιι
ι′

×

⟦⋅⟧
1

2

Figure 2.3. Domain structure for Simple RDF semantics.

This way of defining models unveils the specific quantification of blanks: a blank in RDF is a variable
existentially quantified over a particular graph.
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Satisfiability, validity, entailment and consequence

The following definition is the standard model-theoretic definition of satisfiability, validity and consequence.

Definition 2.7 (Satisfiability, validity, consequence).
– A graph G is satisfiable if it has a model.
– G is valid if for every interpretation I of a vocabulary V ⊇ V(G), I is a model of G.
– A graph G′ is a consequence of a graph G, or G entails G′, denoted G ⊧GRDF G

′, if every model of G is
also a model of G′.

Proposition 2.8 (Empty graph, subgraph, instance lemmata [HAYES 2004]).

Empty graph lemma the empty set of triple is entailled by any graph and does not entail any graph but itself;

Subgraph lemma a graph entails all its subgraphs (i.e. subsets of triples);

Instance lemma a graph is entailled by any of its instances (i.e. variables substitued by values);

The GRDF graphH of Figure 2.2 is entailed by the RDF graphG of Figure 2.1. Moreover, the set of triples
of Listing 2.3, representing an RDF graph G′, also entails H:

: g3 f o a f : name ” Thelonious ” .
: b1 mo: member : g3 .
: t1 dc : c rea to r : g3 .
: b1 mo: performed : t1 .

Listing 2.3. RDF graph G′ as triples.

Indeed, in both cases, there exists a subset of triples which is an instance of H (e.g. with :g3 and :g1 instan-
tiated as d2:g3, :t1 instantiated as :t1, :b1 instantiated as d2:b2 and :rel instantiated as either dc:creator or
mo:composer).

However, none of G or G′ entails the other.

Proposition 2.9 (Satisfiability, validity [BAGET 2005; TER HORST 2005]). Every GRDF graph is satisfiable.
The only valid GRDF graph is the empty graph.

Logical representation of RDF triples

Some RDF graphs may be translated as formulas in a positive (without negation), conjunctive, existential and
function-free first-order logic. These are those graphs in which predicates are not used as subject or object. To
each triple ⟨s, p, o⟩ corresponds the atomic formula p(s, o), such that p is a predicate name, and o and s are
constants if these elements are IRIs or literals, and variables otherwise. A graph is translated as the existential
closure of the conjunction of atomic formulas associated to its triples. Hence, the graph of Figure 2.2 with ?rel
replaced by mo:composer is translated by:

∃?b1, ?t1, ?g1, ?g3, ?bnm ∶ foaf:name(?g3, ”Thelonius”) ∧ foaf:name(?g1, ?bnm)∧
mo:member(?b1, ?g1) ∧mo:member(?b1, ?g3) ∧mo:performed(?b1, ?t1) ∧mo:composer(?t1, ?g3)

It can be checked that it is entailled by the translation of G.
The models of such a formula are isomorphic to those of the simple RDF semantics of the graph.

2.1.4 Computation

The interesting problem in Simple RDF and GRDF is SIMPLE RDF ENTAILMENT [HAYES 2004].
Problem: SIMPLE RDF ENTAILMENT
Input: two GRDF graphs G and H .
Question: Does G ⊧GRDF H?
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This problem is NP-complete for RDF as well as GRDF graphs. If the entailed graph is ground, then the
problem becomes polynomial.

It can be computed as a kind of graph homomorphism: a projection of the node of the entailed graph to those
of the entailing graph so that (a) the structure is preserved, and (b) either labels are the same or are replaced by
a variable.

2.2 A simple ontology language for modelling knowledge

This is covered in a detailed form in [EUZENAT 2007, Chapter 3].

In class, I am likely to skip this section and introduce directly OWL. The opposite choice could likely have
been made: retaining RDFS and skipping OWL.

Once able to express data on the web, the next problem is the definition of the vocabulary used in the RDF
graphs. This means listing the terms used to describe data as well as expressing the axioms constraining the use
of such terms allowing a machine to interpret them properly. Such vocabularies are defined as ontologies. I will
consider that an ontology is simply a set of axioms in a specific logic. I discuss the main ontology languages
designed for the web: RDF Schema (§2.2) and OWL (§2.3).

What I considered so far is only the Simple RDF semantics. Full RDF is defined by identifying a particular
vocabulary, the RDF vocabulary, and adding constraints to the definition of model in relation with this vocabu-
lary. Because these changes are minor, I do not consider them and instead directly define RDFS Schema which
contains full RDF.

RDFS (RDF Schema) [BRICKLEY and GUHA 2004] is an extension of RDF designed to describe relation-
ships between resources using a set of reserved IRIs called the RDFS vocabulary. In the above example, the
reserved word rdf:type can be used to relate instances to classes, e.g. d2:Nina is of type o2:Singer.

This section focusses on RDFS as an extension of the Simple RDF language presented in Section 2.1.1.
Both extensions are defined in the same way:
– They consider a particular set of IRIs of the vocabulary prefixed by rdf: and rdfs:, respectively.
– They add additional constraints to the resources associated to these terms in interpretations.

The vocabulary is first presented (§2.2.1) before the constraints RDFS puts on the interpretation of the
language (§2.2.2).

2.2.1 RDFS as an RDF vocabulary

In RDF and RDF Schema, there exists a set of reserved words, the RDF and RDFS vocabularies designed to
describe relationships between resources like classes, e.g. o2:Singer rdfs:subClassOf o2:Musician, and relationships
between properties, e.g. mo:composer rdfs:subPropertyOf dc:creator.

RDF Typing vocabulary
rdf:type rdf:Property

RDFS Typing vocabulary
rdfs:Class rdfs:Resource rdfs:Literal
rdfs:domain rdfs:range
rdfs:subClassOf rdfs:subPropertyOf rdfs:Datatype

Table 2.1. The RDF and RDFS Vocabularies.

RDF already introduces a few keywords in the rdf: namespace for structuring knowledge:
– ⟨d2:Nina rdf:type o2:Singer⟩ asserts that the resource d2:Nina is an instance of the class o2:Singer;
– ⟨mo:member rdf:type rdf:Property⟩ tells that mo:member is a predicate, i.e. a resource used for labelling edges.

RDFS is expressed as RDF triples using a few more keywords in the rdfs: namespace, such as:
– ⟨o2:Singer rdf:type rdfs:Class⟩ indicating that the resource o2:Singer as for type rdfs:Class, it is thus a class.
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– ⟨o2:Singer rdfs:subClassOf o2:Musician⟩ meaning that o2:Singer is a subclass of o2:Musician, thus each instance
of o2:Singer, like d2:Nina, is also an instance of o2:Musician;

– ⟨mo:member rdfs:range o2:Ensemble⟩ asserts that any resource used at the extremity of an edge labelled by
mo:member is an instance of the o2:Ensemble class.
Some authors have introduced ρDF [MUÑOZ, PÉREZ, and GUTIERREZ 2009] as the language correspond-

ing to the RDF and RDFS typing vocabularies and some documents mention ‘the description logic fragment of
RDFS’ which is likely to be the same thing. I will concentrate on this fragment, because it is the semantically
relevant one. The fragment of the RDFS vocabulary considered here is presented in Table 2.1. The shortcuts
that may be used for each of them are given in brackets. From now on, VRDFS denotes the RDFS vocabulary,
i.e. all IRIs whose prefix is rdf or rdfs.

Figure 2.4 displays the RDFS graph S made of the assertions of Listing 2.4:
: t1 mo: composer d2 : g3

d2 : b1 mo: member d2 : g3

Listing 2.4. RDF Data.

with the RDF Schema of Listing 2.5:
f o a f : Person r d f s : subClassOf f o a f : Agent
f o a f : Group r d f s : subClassOf f o a f : Agent

dc : c rea to r r d f s : domain o1 : Work
dc : c rea to r r d f s : range f o a f : Person

f o a f : member r d f s : domain f o a f : Group
f o a f : member r d f s : range f o a f : Agent

mo: composer r d f s : subPropertyOf dc : c rea to r
mo: composer r d f s : domain o4 : MusicPiece

mo: member r d f s : subPropertyOf f o a f : member
mo: member r d f s : domain o2 : Ensemble
mo: member r d f s : range f o a f : Person

Listing 2.5. RDF Schema as triples.

o1:Work foaf:Persondc:creator

o4:MusicPiece mo:composer

:t1 d2:g3

foaf:Agent

foaf:member foaf:Group

mo:member o2:Ensemble

d2:b2

rdfs:domain rdfs:range rdfs:domain
rdfs:rangerdfs:subClassOf rdfs:subClassOf

rdfs:domain
rdfs:subPropertyOf

rdfs:domain

rdfs:subPropertyOf

rdfs:range

mo:composer mo:member

rdfs:range rdf:typerdf:type rdf:type

Figure 2.4. The RDFS graph S of Listing 2.5. The arrows in dashed lines are consequences of the RDFS semantics.

2.2.2 RDFS semantics

In adding new constraints to RDF interpretations, RDFS graphs may have less models, and thus more conse-
quences. It is possible for example, in RDF, to deduce ⟨mo:Composer rdf:type rdf:Property⟩ from ⟨ :t1 mo:composer
d2:g3⟩; in RDFS, to deduce ⟨ :t1 rdf:type o1:Work⟩ from ⟨ :t1 mo:composer d2:g3⟩, ⟨mo:composer rdfs:subPropertyOf
dc:creator⟩, and ⟨dc:creator rdfs:domain o1:Work⟩.

The RDFS semantics is obtained by restricting the set of models of RDFS graphs according to the specific
vocabulary of the language. It extends that of RDF by considering some IRIs as identifying classes is a subset
of ∆. These are interpreted in two steps, as properties (§2.1.3).

Definition 2.10 (RDFS interpretation). An RDFS interpretation of a vocabulary V is a tuple ⟨∆, P, C, ⟦⋅⟧,
[⋅], ⋅ι⟩ such that:
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– ⟨∆,P, ⟦⋅⟧, ⋅ι⟩ is an RDF interpretation;
– C ⊆∆ is a distinguished subset of ∆ identifying if a resource denotes a class of resources;
– [⋅] ∶ C → 2∆ is a mapping that assigns a set of resources to every resource denoting a class;
– L ⊆∆ is the set of literal values,

L U BV T

P C

∆

L

ιι
ι′

×

⟦⋅⟧
1

2

[⋅]

Figure 2.5. Domain structure for RDFS semantics.

Specific conditions are added to the resources associated to terms of RDFS vocabularies in an RDFS in-
terpretation to be an RDFS model of an RDFS graph. These conditions include the satisfaction of the RDF
and RDF Schema axiomatic triples (Definition 2.11 and 2.12) as appearing in the normative semantics of RDF
[HAYES 2004].

Definition 2.11 (RDF axiomatic triples). RDF axiomatic triples are the triples in the following set:

⟨rdf:type, rdf:type, rdf:Property⟩

Definition 2.12 (RDFS axiomatic triples). RDFS axiomatic triples are the triples in the following set:

⟨rdf:type, rdfs:domain, rdfs:Resource⟩ ⟨rdf:type, rdfs:range, rdfs:Class⟩

⟨rdfs:domain, rdfs:domain, rdf:Property⟩ ⟨rdfs:domain, rdfs:range, rdfs:Class⟩

⟨rdfs:range, rdfs:domain, rdf:Property⟩ ⟨rdfs:range, rdfs:range, rdfs:Class⟩

⟨rdfs:subPropertyOf, rdfs:domain, rdf:Property⟩ ⟨rdfs:subPropertyOf, rdfs:range, rdf:Property⟩

⟨rdfs:subClassOf, rdfs:domain, rdfs:Class⟩ ⟨rdfs:subClassOf, rdfs:range, rdfs:Class⟩

The axiomatic triples are in principle infinite, but the simple language used here make them finite.
From this definition, any RDFS interpretation is an RDF interpretation. An RDF interpretation must be

extended to identify classes. It usually corresponds to several RDFS interpretations.

Definition 2.13 (RDFS Model). Let G be an RDFS graph, and I = ⟨∆, P, C, ⟦⋅⟧, [⋅], ⋅ι⟩ be an RDFS inter-
pretation of a vocabulary V ⊆ VRDFS ∪ V such that V(G) ⊆ V . I is an RDFS model of G (I ⊧RDFS G) if I
satisfies the following conditions:
1. Simple semantics:

a) there exists an extension ι′ of ι to B(G) such that for each triple ⟨s, p, o⟩ of G, pι
′ ∈ P and ⟨sι′ , oι′⟩ ∈

⟦pι′⟧.
2. RDF semantics:

a) x ∈ P⇔ ⟨x, rdf:Propertyι
′⟩ ∈ ⟦rdf:typeι

′⟧.
b) I satisfies all RDF axiomatic triples (Definition 2.11)
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3. RDFS Classes:
a) if x ∈∆, then x ∈ [rdfs:Resourceι].
b) if x ∈ C, then x ∈ [rdfs:Classι].
c) if x ∈ L, then x ∈ [rdfs:literalι

′].
4. RDFS Subproperty:

a) ⟦rdfs:subPropertyOfι⟧ is transitive and reflexive over P .
b) if ⟨x, y⟩ ∈ ⟦rdfs:subPropertyOfι⟧ then x, y ∈ P and ⟦x⟧ ⊆ ⟦y⟧.

5. RDFS Subclass:
a) ⟦rdfs:subClassOfι⟧ is transitive and reflexive over C.
b) if ⟨x, y⟩ ∈ ⟦rdfs:subClassOfι⟧, then x, y ∈ C and [x] ⊆ [y].

6. RDFS Typing:
a) x ∈ [y], ⟨x, y⟩ ∈ ⟦rdf:typeι⟧.
b) if ⟨x, y⟩ ∈ ⟦rdfs:domainι⟧ and ⟨u, v⟩ ∈ ⟦x⟧ then u ∈ [y].
c) if ⟨x, y⟩ ∈ ⟦rdfs:rangeι⟧ and ⟨u, v⟩ ∈ ⟦x⟧ then v ∈ [y].

Any RDFS model is an RDF model. It is not true that any RDF model can support an RDFS model because
the use of the RDFS vocabulary imposes additional constraints on RDFS models.

Definition 2.14 (RDFS consequence). Let G and H be two RDFS graphs, then G RDFS-entails H (denoted
by G ⊧RDFS H) if every RDFS model of G is also an RDFS model of H .

[HAYES 2004] states that ‘Since every RDFS interpretation is an RDF interpretation, if G RDFS-entails H
then it RDF-entails H’. In the errata (and in [HAYES and PATEL-SCHNEIDER 2014]), the converse is given:

Proposition 2.15. If G ⊧RDF H then G ⊧RDFS H .

Even the empty graph RDFS-entails far more assertions than it RDF-entails [HAYES 2004], for example all
triples of the form:

: x r d f : type r d f s : Resource .

are true in all RDFS-interpretations of any vocabulary containing the IRI :x.
Consider the graph S described in Figure 2.4. Plain lines correspond to the triples of Listing 2.5; plain and

dashed lines correspond to what can be deduced with the RDFS semantics.
S /⊧GRDF :b rdf:type foaf:Person because there is no subgraph of S that is an instance of this triple.
But S ⊧RDFS :b rdf:type foaf:Person because for any RDFS model of S, ⟨ :t1ι, d2:g3ι⟩ ∈ ⟦mo:composerι⟧ which

means that there exists an extension ι′ of ι to { :b} such that ⟨ :t1ι, :bι
′⟩ ∈ ⟦mo:composerι⟧. By 4b, this implies

that ⟨ :t1ι, :bι
′⟩ ∈ ⟦dc:creatorι⟧ which, by 6c, entails that :bι

′ ∈ [foaf:Personι]. Since this holds for every RDFS
model of S, then S ⊧RDFS :b rdf:type foaf:Person.

The relation rdfs:subClassOf is also called ‘subsumption’. It means that in all models, the interpretation of
the subsumed class is included in the interpretation of the subsuming one.

2.2.3 Computation

RDFS ENTAILMENT is defined similarly as SIMPLE RDF ENTAILMENT:
Problem: RDFS ENTAILMENT
Input: two RDFS graphs G and H .
Question: Does G ⊧RDFS H?

It is also an NP-complete problem [GUTIERREZ, HURTADO, and MENDELZON 2004].
In RDF, it was possible to determine if G ⊧RDF H by finding an RDF-homorphism between H and G

(§2.1.4). In RDFS, this not so easily possible.
For determining G ⊧RDFS H , a procedure (⊢) has to be designed. In principle, one can consider two ap-

proaches to it: A compilation (or data-driven or forward-chaining) procedure which will generate all con-
sequences of G and determine if H belong to them; An evaluation (or query-driven or backward-chaining)
procedure which starts with H and search for a proof that it is a consequence of G:
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G ⊧RDFS H ≡ G ⊢ H

compilation

interpretation

If the graph (data and ontology) does not change often and queries have to be answered quickly, then the
compilation approach is appropriate. If they are constantly evolving and some delay is tolerable for answering
queries, then an interpretation approach is more adapted.

Of course, there may be intermediate strategies: for instance, compiling the stable knowledge corresponding
to the ontology and interpreting queries with respect to the compiled ontology and the data (supposed less
stable).

2.2.4 Conclusion

Full RDF extends simple RDF with a specific vocabulary. Similarly, RDF Schema extends RDF with another
vocabulary. These vocabularies express constraints on the entities in RDF graphs: their type and structure
for RDF and further constraints on domains of properties and class/property specialisation. These constraints
further extend the definition of RDFS interpretations, and reduces the interpretations which are models of RDF
and RDFS graphs. Hence the notion of consequence is different in Full RDF or RDFS.

2.3 The web ontology language OWL

RDF and RDFS allows to assert relations between classes and properties, e.g. subClassOf, but they do not allow
to construct these from the inside. The OWL language [HORROCKS, PATEL-SCHNEIDER, and VAN HARME-
LEN 2003; DEAN and SCHREIBER 2004] is dedicated to class and property definitions. Inspired from descrip-
tion logics [BAADER, CALVANESE, MCGUINNESS, NARDI, and SCHNEIDER 2003], it provides constructors
to constrain them precisely. The W3C has released a new version of OWL (OWL 2.0) [BECKETT 2009].

I present below the syntax, semantics and a very simplistic fragment of OWL extending that of RDFS
presented in the previous section.

2.3.1 OWL syntax

The OWL syntax, based on RDF, introduces a specific vocabulary in the owl: name space. But, OWL is more
than a vocabulary: there are many RDF graphs with OWL vocabulary which cannot be interpreted in OWL.
Hence, not all RDF graphs using this vocabulary are necessarily well-formed OWL ontologies: further con-
straints have to be satisfied.

It is more reasonable to think that OWL has a syntax, cast in RDF syntax, in the more classic sense of the
term. In particular, OWL abstractly defines class descriptions and property descriptions. These can be defined
recursively like terms (see Definition 2.16).

I will mostly use the XML/RDF and Turtle syntaxes [BECKETT 2009].
The OWL vocabulary is given in Table 2.2 following [DEAN and SCHREIBER 2004] for OWL and [BAO,

KENDALL, MCGUINNESS, and PATEL-SCHNEIDER 2009] for OWL 2. I only cover the main terms, miscella-
neous one are not considered here. One of the main difference between OWL and OWL 2 is a uniform treatment
of datatypes which is also lightly covered here.

The intuitive semantics for the main OWL constructors is as follows:
– RDF keywords (rdf:type, rdf:Property) and RDFS’ (rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, rdfs:domain)

are used with the same semantics.
– owl:Class is a new (meta)class.
– owl:sameAs and owl:differentFrom are used to assert that two resources are equal or different.
– owl:inverseOf asserts that a property p is the converse of a property p′ (in this case, the triple ⟨s p o⟩ entails
⟨o p′ s⟩);
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Typing vocabulary
owl:Class owl:Thing owl:Nothing

rdf:Property owl:Data(type)Property owl:ObjectProperty
Class/Datatype+ constructor

owl:intersectionOf+ owl:unionOf+ owl:complementOf
owl:oneOf+

Property restrictions
owl:maxQualifiedCardinality2 owl:minQualifiedCardinality2

owl:allValuesFrom+ owl:hasValue
Class constraints

rdfs:subClassOf owl:disjointWith
Property constraints

rdfs:subPropertyOf owl:inverseOf
rdfs:domain owl:InverseFunctionalProperty rdfs:range

Individual constraints
rdf:type owl:sameAs owl:differentFrom

Property restrictions machinery
owl:Restriction owl:onProperty owl:onClass2

Table 2.2. The OWL vocabulary. OWL 2 primitives are followed by an ”2” exponent; primitives applicable to datatypes
since OWL 2 are marked with a ”+” exponent.

– owl:allValuesFrom associates a class c to a relation p. This defines the class of objects x such that if ⟨x p y⟩
holds, then y belongs to c (this is a universally quantified role in description logics). owl:someValuesFrom
encodes existentially quantified roles.

– owl:minCardinality (resp. owl:maxCardinality) defines the class of objects related to at least (resp. at most) a
specific number of objects through a given property. A qualified version of these constructors constrains, in
addition, that these objects belong to a specific class.

– owl:oneOf defines a class in comprehension by enumerating the set of its instances.
– owl:hasValue constrains a property to have (at least) a particular value (the value may in principle be a

resource or a literal).
– owl:disjointWith asserts that two classes cannot have a common instance.
– owl:unionOf, owl:intersectionOf and owl:complementOf define a class as the disjunction, the conjunction or the

negation of other classes.
I have not mentioned all constructors. Many of them can be trivially implemented by using the cited ones,
e.g. owl:equivalentClass asserting that two classes are equivalent can be expressed with two rdfs:subClassOf asser-
tions. OWL also uses data types that are not considered here. They are however important as they can lead to
inconsistency.

We provide an inductive description logic-style presentation of the OWL syntax based on the identification
of IRI corresponding to individuals, properties and classes.

Definition 2.16 (OWL terms). Given three sets of IRIs UI , UP and UC , such that
{owl:Thing, owl:Nothing, rdfs:Literal} ⊆ UC , the set of object expressions is defined as:

IEXP (UI) ∶∶=u with u ∈ UI

the set of property expressions is defined as:

PEXP (UP ) ∶∶=u with u ∈ UP

∣ owl:inverseOf(p) with p ∈ PEXP (UP )

the set of class expressions is defined as:
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CEXP (UP , UC) ∶∶=u with u ∈ UC

∣ owl:unionOf(c, c′)
∣ owl:intersectionOf(c, c′)
∣ owl:complementOf(c)
∣ owl:oneOf(o1, . . . on) with o1, . . . on ∈ IEXP (UI)
∣ owl:hasValue(p, v) with v ∈ L
∣ owl:allValuesFrom(p, c)
∣ owl:minQCardinality(p,n, c)
∣ owl:maxQCardinality(p,n, c) with p ∈ PEXP (UP ), c, c′ ∈ CEXP (UP , UC), n ∈ N.

OWL ontologies are based on these terms.

Definition 2.17 (OWL ontology). Given a vocabulary V made of three sets of IRIs UI , UP and UC , an
ontology over V , is a set of assertions of the form:

c rdfs:subClassOf c′ ∣ c owl:disjointWith c′

p rdfs:subPropertyOf p′ ∣ p rdfs:domain c ∣ p rdfs:range c

o rdf:type c ∣ o owl:sameAs o′ ∣ o owl:differentFrom o′

with o, o′ ∈ IEXP (UI), p, p′ ∈ PEXP (UP ), c, c′ ∈ CEXP (UP , UC)

There exist no such grammar in OWL: OWL axioms are expressed as RDF graphs corresponding to
this grammar. All assertions of Definition 2.17 are already triples so they can directly be expressed in
RDF. This is not the case of all terms of Definition 2.16 which may relate more than two elements, e.g.
owl:minQCardinality(p,n, c) relates p, n and c. Such expressions are rendered in RDF as resources of the class
owl:Restriction. Listings 2.6 and 2.7 provide examples of this.

Below we consider an ontology O extending the RDFS graph S of Listing 2.5 with the following OWL
statements:

o4:MusicPiece�o2:Person

mo:hasComposed ≡ mo:composer−1

⊺ ⊑ ∀mo:performed.o4:MusicPiece

⊺ ⊑ ∀mo:composer.o2:Person

mo:Pianist ≡ ∃≥1mo:plays.o3:Piano

o2:Composer ≡ ∃≥1mo:hasComposed.⊺
mo:JazzTheme ≡ o4:MusicPiece ⊓ ∃≥1mo:performed−1.o2:JazzBand

This means that:
– No o4:MusicPiece is also a o2:Person (and vice versa);
– mo:hasComposed is the inverse of the mo:composer relation;
– Whatever has been mo:performed is a o4:MusicPiece;
– Whoever is the mo:composer of something is a o2:Person;
– A mo:Pianist is some one who mo:plays at least one o3:Piano;
– A o2:Composer is some one who mo:hasComposed at least one thing;
– A mo:JazzTheme is a o4:MusicPiece that at least one o2:JazzBand has mo:performed.

Ontology O is presented in Figure 2.6.
There are several syntaxes for expressing OWL ontologies beyond the description logic syntax used above.

A fragment of O can be expressed in OWL (RDF/XML) Listing 2.6:

<owl :Class r d f : a b o u t = ” o4:MusicPiece ”>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e = ” o2:Person ” />
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</ owl :Class>

<owl :Ob jec tProper ty r d f : a b o u t = ” #hasComposed ”>
<owl : inverseOf r d f : r e s o u r c e = ” #composer ” />

</ ow l :Ob jec tProper ty>

<owl :Ob jec tProper ty r d f : a b o u t = ” #composer ”>
<rd fs :subProper tyOf r d f : r e s o u r c e = ” d c : c r e a t o r ” />
<rd fs :domain r d f : r e s o u r c e = ” o4:MusicPiece ” />

</ ow l :Ob jec tProper ty>

<owl :Class r d f : a b o u t = ” owl :Th ing ”>
<rd fs :subClassOf>

<o w l : R e s t r i c t i o n>
<owl :onProper ty r d f : r e s o u r c e = ” #composer ” />
<owl :a l lVa luesFrom r d f : r e s o u r c e = ” o2:Person ” />

</ o w l : R e s t r i c t i o n>
</ rd fs :subClassOf>
<rd fs :subClassOf>

<o w l : R e s t r i c t i o n>
<owl :onProper ty r d f : r e s o u r c e = ” #performed ” />
<owl :a l lVa luesFrom r d f : r e s o u r c e = ” o4:MusicPiece ” />

</ o w l : R e s t r i c t i o n>
</ rd fs :subClassOf>

</ owl :Class>

<owl :Ob jec tProper ty r d f : a b o u t = ” #performed ”>
<r d f s : r ange r d f : r e s o u r c e = ” o4:MusicPiece ” />

</ ow l :Ob jec tProper ty>

<owl :Class r d f : a b o u t = ” # P i a n i s t ”>
<rd fs :subClassOf>

<o w l : R e s t r i c t i o n>
<owl :onProper ty r d f : r e s o u r c e = ” #plays ” />
<o w l : m i n Q u a l i f i e d C a r d i n a l i t y>1</ o w l : m i n Q u a l i f i e d C a r d i n a l i t y>
<owl:onClass r d f : r e s o u r c e = ” o3:Piano ” />

</ o w l : R e s t r i c t i o n>
</ rd fs :subClassOf>

</ owl :Class>

<owl :Class r d f : a b o u t = ” o2:Composer ”>
<rd fs :subClassOf>

<o w l : R e s t r i c t i o n>
<owl :onProper ty r d f : r e s o u r c e = ” hasComposed ” />
<o w l : m i n Q u a l i f i e d C a r d i n a l i t y>1</ o w l : m i n Q u a l i f i e d C a r d i n a l i t y>
<owl:onClass r d f : r e s o u r c e = ” owl :Th ing ” />

</ o w l : R e s t r i c t i o n>
</ rd fs :subClassOf>

</ owl :Class>

<owl :Class r d f : a b o u t = ” #JazzTheme ”>
<rd fs :subClassOf>

<owl :Class>
<o w l : i n t e r s e c t i o n O f rd f :parseType= ” C o l l e c t i o n ”>

<owl :Class r d f : a b o u t = ” o4:MusicPiece ” />
<o w l : R e s t r i c t i o n>

<owl :onProper ty>
<owl :Proper ty>

<owl : inverseOf r d f : r e s o u r c e = ” mo:performed ” />
</ ow l :P roper ty>

</ owl :onProper ty>
<o w l : m i n Q u a l i f i e d C a r d i n a l i t y>1</ o w l : m i n Q u a l i f i e d C a r d i n a l i t y>
<owl:onClass r d f : r e s o u r c e = ” o2:JazzBand ” />

</ o w l : R e s t r i c t i o n>
</ o w l : i n t e r s e c t i o n O f>

</ owl :Class>
</ rd fs :subClassOf>

</ owl :Class>

Listing 2.6. RDF/XML rendering of a fragment of ontology O.

Or it can be expressed as the set of triples of Listing 2.7:

o4 : MusicPiece owl : d i s j o i n t W i t h o2 : Person .

: hasComposed owl : inverseOf : composer .

: composer r d f s : subPropertyOf dc : c rea to r .
: composer r d f s : range o2 : Person .
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: composer r d f s : domain o4 : MusicPiece .

: performed r d f s : domain o4 : MusicPiece .

: P i a n i s t r d f s : subClassOf : r3 .
: r3 r d f : type owl : R e s t r i c t i o n .
: r3 owl : onProperty : p lays .
: r3 owl : m i n Q u a l i f i e d C a r d i n a l i t y ” 1 ” ˆ ˆ xsd : I n tege r .
: r3 owl : onClass o3 : Piano .

o2 : Composer r d f s : subClassOf : r1 .
: r1 r d f : type owl : R e s t r i c t i o n .
: r1 owl : onProperty : hasComposed .
: r1 owl : m i n Q u a l i f i e d C a r d i n a l i t y ” 1 ” ˆ ˆ xsd : I n tege r .
: r1 owl : onClass o4 : MusicPiece .

: JazzTheme r d f s : subClassOf o4 : MusicPiece .
: JazzTheme r d f s : subClassOf : r2 .

: r2 r d f : type owl : R e s t r i c t i o n .
: r2 owl : onProperty : a1 .
: r2 owl : m i n Q u a l i f i e d C a r d i n a l i t y ” 1 ” ˆ ˆ xsd : I n tege r .
: r2 owl : onClass o2 : JazzBand .
: a1 owl : inverseOf : performed .

Listing 2.7. OWL ontology fragment O rendered as triples.

o2:Persono4:MusicPiece

o2:Composer

dc:creator

mo:composer

mo:hasComposedo4:JazzTheme

o2:JazzBand

mo:performed

:w1

owl:Restriction

:r1

”1”owl:Thing
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Figure 2.6. The sample OWL ontology fragment O, without the mo:Pianist definition. Dashed relations are those which
can be inferred from the OWL semantics.

We extend the standard RDF graphic notation by displaying resources identified as classes in yellow and
those identified as properties in blue. We also use different types of arrows for subsumption (rdfs:subClassOf,
rdfs:subPropertyOf), class membership (rdf:type), and class exclusion (owl:disjointWith). This notation is summarised
in Figure B.1 (p.93).

2.3.2 OWL semantics

The semantics of OWL constructs is given in [PATEL-SCHNEIDER, HAYES, and HORROCKS 2004; MOTIK,
PATEL-SCHNEIDER, and CUENCA GRAU 2009] following a description logic style. Here I largely differs from
this classical presentation (also given in [EUZENAT 2007]) in order to extend the RDFS semantics.

An interpretation of an OWL vocabulary, identifies different set of entities in the domain ∆, which may be
interpreted as classes or properties, more specifically:
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C the set of classes containing owl:Thingι and owl:Nothingι;
D the set of data types containing rdfs:Literalι;
I the set of individuals;
Pd the set of data type properties;
Pi the set of object properties.

Definition 2.18 (OWL interpretation). Let V ⊆ V = U ∪L be a vocabulary, an OWL interpretation of V is a
tuple I = ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι⟩ such that:

– ⟨∆, Pd ∪Pi, C ∪D, ⟦⋅⟧, [⋅], L ∩ V, ⋅ι⟩ is an RDFS interpretation;
– ∆ (resources) ≠ ∅;
– I ⊆∆;
– I ≠ ∅;
– L ⊆∆;
– I ∩L = ∅;
– [⋅] ∶ C → 2I;
– [⋅] ∶ D → 2L;
– ⟦⋅⟧ ∶ Pd → 2I×L;
– ⟦⋅⟧ ∶ Pi → 2I×I;
– ι ∶ V →∆;

As before an OWL interpretation can be extended to a set of variables.

Definition 2.19 (Extension of an OWL interpretation to variables). Let I = ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι⟩
be an OWL interpretation of a vocabulary V ⊆ V , and B ⊆ B a set of variables. An extension of I to B is an
OWL interpretation ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι′⟩ with ι′ ∶ V ∪B →∆ such that ∀x ∈ V , xι

′ = xι.

L U BV T

PiPd CD I

∆

L

ιι
ι′

×

⟦⋅⟧
1

2
×

⟦⋅⟧

1
2 [⋅][⋅]

Figure 2.7. Domain structure for OWL semantics.

Compound expressions are interpreted according the classical description logic semantics.

Definition 2.20 (Interpretation of compound expressions). Let I = ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι⟩ be an OWL
interpretation over a vocabulary ⟨L,U⟩, the interpretation of compound class expressions by I is defined by:
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[owl:Nothingι] = ∅
[owl:Thingι] = I
[rdfs:Literalι] = L

[u] = [uι]
⟦u⟧ = ⟦uι⟧

[owl:complementOf(c)] = I ∖ [c]
[owl:unionOf(c, c′)] = [c] ∪ [c′]

[owl:intersectionOf(c, c′)] = [c] ∩ [c′]
[owl:oneOf(o1, . . . on)] = {oι1, . . . oιn}
[owl:hasValue(p, v))] = {x ∈ I; ⟨x, vι⟩ ∈ ⟦p⟧}

[owl:allValuesFrom(p, c))] = {x ∈ I;∀⟨x, y⟩ ∈ ⟦p⟧, y ∈ [c]}
[owl:minQCardinality(p,n, c))] = {x ∈ I; ∣{⟨x, y⟩ ∈ ⟦p⟧; y ∈ [c]}∣ ≥ n}
[owl:maxQCardinality(p,n, c))] = {x ∈ I; ∣{⟨x, y⟩ ∈ ⟦p⟧; y ∈ [c]}∣ ≤ n}

Like for description logics, it would be possible to interpret other types of compound expressions (like
property path expressions).

Definition 2.21 (Axiom satisfaction). Let I = ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι⟩ be an OWL interpretation over a
vocabulary ⟨L,U⟩, an axiom δ is said to be satisfied by I (noted I ⊧OWL δ) as:

I ⊧OWL ⟨s, p, o⟩ if ⟨sι, oι⟩ ∈ ⟦p⟧
I ⊧OWL rdfs:subClassOf(c, c′) if [c] ⊆ [c′]
I ⊧OWL owl:disjointWith(c, c′) if [c] ∩ [c′] = ∅

I ⊧OWL rdfs:subPropertyOf(p, p′) if ⟦p⟧ ⊆ ⟦p′⟧
I ⊧OWL rdfs:domain(p, c) if {s∣⟨s, o⟩ ∈ ⟦p⟧} ⊆ [c]
I ⊧OWL rdfs:range(p, c) if {o∣⟨s, o⟩ ∈ ⟦p⟧} ⊆ [c]
I ⊧OWL rdf:type(o, c) if oι ∈ [c]

I ⊧OWL owl:sameAs(o, o′) if oι = o′ι

I ⊧OWL owl:diferentFrom(o, o′) if oι /= o′ι

A model is defined as usual as an interpretation that satisfies all axioms. It also satisfies the constraints
raised by the category of each term.

Definition 2.22 (OWL model). An OWL interpretation I = ⟨∆,C,D,I,Pd,Pi, [⋅], ⟦⋅⟧, ι⟩ over a vocabulary
⟨L,U⟩ is a model of an OWL Ontology O (I ⊧OWL O) iff:

– each IRI used in class (resp. datatype property, object property, individual, datatype) position inO, belongs
to C (resp. Pd, Pi, I, D);

– each literal in O belongs to L;
– there exists an extension J of I to variables (blanks) such that J satisfies all axioms in O.

The set of models of an ontology O is denoted asM(O).
Consequence, inconsistency, etc. are defined as usual (Appendix A).

Definition 2.23 (Consequence). Given an ontology formula δ, δ is a consequence of an ontology O, if it is
satisfied by all models of O. This is denoted as O ⊧OWL δ.

Given the ontology fragment O presented in Listing 2.7, it is possible to derive various ontological conse-
quences:
O ⊧ mo:performed rdfs:range o4:MusicPiece because ⊺ ⊑ ∀mo:performed.o4:MusicPiece means that, for all models

of O, ⟦mo:performedι⟧ ⊆∆ × [o4:MusicPieceι] which means that O ⊧ mo:performed rdfs:range o4:MusicPiece.
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O ⊧ mo:hasComposed rdfs:domain o2:Person because O ⊧ mo:composer rdfs:range o2:Person using the same rea-
soning as above. Moreover, mo:hasComposed is the converse of (owl:inverseOf) mo:composer, then it has
the inverse domain and range. Indeed, ⟦mo:composerι⟧ ⊆ [o4:MusicPieceι] × [o2:Personι] is equivalent to
⟦mo:hasComposedι⟧ = ⟦(mo:composer−1)ι⟧ = ⟦mo:composerι⟧−1 ⊆ [o2:Personι] × [o4:MusicPieceι].

O ⊧ o2:Composer rdfs:subClassOf o2:Person because all models of O satisfy [o2:Composerι] ⊆
[∃≥1mo:hasComposed.⊺], which means that, ∀o ∈ [o2:Composerι] there exists o′ ∈ [⊺ι] = ∆ such that
⟨o, o′⟩ ∈ ⟦mo:hasComposedι⟧. But ⟦mo:hasComposedι⟧ ⊆ [o2:Personι] × [o4:MusicPieceι]. This means that
[o2:Composerι] ⊆ [o2:Personι], hence O ⊧ o2:Composer ⊑ o2:Person.

O ⊧ o2:Composer owl:disjointFrom o4:JazzTheme because for all models of O, [o4:JazzThemeι] ⊆ [o4:MusicPieceι]
and [o2:Composerι] ⊆ [o2:Personι] and [o2:Personι] ∩ [o4:MusicPieceι] = ∅, then [o4:jazzThemeι] ∩
[o2:Composerι] = ∅, hence O ⊧ o2:Composer owl:disjointFrom o4:JazzTheme.

O ⊧ ∃≥1mo:performed−1.o2:JazzBand ⊑ o4:MusicPiece (showing that the definition of mo:JazzTheme is redundant)
because for all models of O, [∃≥1mo:performed−1.o2:JazzBand] ⊆ {o ∈ ∆∣#{⟨o, y⟩ ∈ ⟦(mo:performed−1)ι⟧∣y ∈
[o2:JazzBandι]} ≥ 1} = {o ∈ ∆∣#{⟨y, o⟩ ∈ ⟦(mo:performed)ι⟧∣y ∈ [o2:JazzBandι]} ≥ 1}. This means
that these objects are in the range of at least one mo:performed relation, but ⟦mo:performedι⟧ ⊆ ∆ ×
[o4:MusicPieceι], hence [∃≥1mo:performed−1.o2:JazzBand] ⊆ [o4:MusicPieceι].

Some of these statements are displayed in dashed in Figure 2.6.
If one now considers the graph G′′ as the graph of Figure 2.1 to which are added the following statements:

d2 : g3 mo: p lays : p1 .
: p1 r d f : type o3 : Piano .

d2 : b2 r d f : type o2 : JazzBand .

Listing 2.8. Triples added to RDF graph G to make graph G′′.

with the ontology O of Listing 2.7, it is possible to deduce that:
O ∪G ⊧ d2:g3 mo:hasComposed :t1 because in all models of O ∪ G, ⟨ :t1ι

′

, d2:g3ι⟩ ∈ ⟦(mo:composerι)⟧
and ⟦(mo:hasComposedι)⟧ = ⟦(mo:composer−1)ι)⟧ = ⟦mo:composerι⟧−1, thus ⟨d2:g3ι, :t1ι

′⟩ ∈
⟦(mo:hasComposedι)⟧.

O ∪G ⊧ d2:g3 rdf:type mo:Composer because in all models of O ∪ G, ⟨d2:g3ι, :t1ι
′⟩ ∈ ⟦mo:hasComposedι⟧ and

:p1ι
′ ∈ [⊺] =∆, thus d2:g3ι ∈ {o ∈∆∣#{⟨o, y⟩ ∈ ⟦mo:playsι ∧ y ∈∆⟧} ≥ 1}, hence d2:g3ι ∈ [mo:Composerι].

O ∪G′′ ⊧ d2:g3 rdf:type mo:Pianist because in all models of O ∪ G′′, ⟨d2:g3ι, :p1ι
′⟩ ∈ ⟦mo:playsι⟧ and :p1ι

′ ∈
[o3:Pianoι], thus d2:g3ι ∈ {o ∈∆∣#{⟨o, y⟩ ∈ ⟦mo:playsι⟧∣y ∈ [o3:Pianoι]} ≥ 1}, hence d2:g3ι ∈ [mo:Pianistι].

O ∪G′′ ⊧ :t1 rdf:type mo:JazzTheme because in all models of O ∪ G′′, ⟨d2:b2ι, :t1ι
′⟩ ∈ ⟦mo:performedι⟧ and

d2:b2ι ∈ [o2:JazzBandι], thus :t1ι
′ ∈ {o ∈ ∆∣#{⟨y, o⟩ ∈ ⟦mo:performedι⟧∣y ∈ [o2:JazzBandι]} ≥ 1}, and then

:t1ι
′ ∈ {o ∈∆∣#{⟨o, y⟩ ∈ ⟦mo:performedι⟧−1∣y ∈ [o2:JazzBandι]} ≥ 1}, hence :t1ι

′ ∈ [mo:JazzThemeι].
The consequence function Cnω(O) = {δ ∣ O ⊧OWL δ} identifies the set of consequences of Ontology O. It

satisfies the three properties of a closure function (Appendix A).

2.3.3 Computation

OWL ENTAILMENT is defined as usual:
Problem: OWL ENTAILMENT
Input: an OWL ontology O, an RDFS graphs G and an OWL statement δ.
Question: Does O,G ⊧OWL δ?

But it is indeed more complicated than as usual.
The complexity of the problem may range depending on the chose version of OWL from polynomial to

undecidable (OWL Full).

Conclusion

In this chapter, we have introduced various concepts to express knowledge and their semantics:



2.3 The web ontology language OWL 25

1. A graph language for expressing data: G ∋ ⟨s, p, o⟩ (RDF triple)
2. With a semantics for graphs: G ⊧GRFD ⟨s, p, o⟩, G ⊧GRFD G′

3. A language for defining ontologies: O ∋ δ (axiom)
4. A semantics for ontologies: O ⊧OWL δ, O ⊧OWL O

′, O,G ⊧OWL ⟨s, p, o⟩, O,G ⊧OWL G
′,

Quiz
– Can the use of an (OWL) ontology change the interpretation of (RDF) data?
– Does adding more triples (axioms, correspondences) to a graph (ontology, alignment) increases its set of

models?
– Does an RDF graph necessarily entails its subgraphs?
– Does an RDF graph entails its instances, i.e. graphs in which some variables are replaced by values (or other

variables)?
– Does adding an ontology to a graph entails more consequences?
– How are the blank nodes, a.k.a. variables, interpreted in RDF?
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3

Networks of aligned ontologies

IN WHICH WE LAY BRIDGES (ALIGNMENTS) BETWEEN THEORIES TO ADDRESS MISUNDERSTANDING, END-
ING WITH A NETWORK OF RELATED ONTOLOGIES — WE PROVIDE DIFFERENT SEMANTICS FOR SUCH NET-
WORKS ALLOWING TO UNDERSTAND THE BENEFIT OF ALIGNMENTS FOR INTEROPERATION — WE CAN

INTERPRET THE NETWORK AS A WHOLE OR IN THE NEIGHBORHOOD OF A PARTICULAR AGENT.

Agents do not evolve in a vacuum. They interact with each other so that they can use each other’s knowl-
edge. They may also take advantage of knowledge offered by other knowledge and data sources, such as data
exposed on the web, e.g. wikidata, data streams generated by simple sensors, or provided by human beings or
other agents.

So far, knowledge was expressed in a form which is suitable for computers and a way to assign it meaning
has been introduced. However, there is no a priori reason that knowledge and data is expressed the same way.

Different ontologies may represent, differently, the same set of objets, considering them from different
standpoints, e.g. musicological, historical, economical. They may also be complementary because they focus
on a subset of the objects, e.g. traditional instruments, opera, punk bands. The knowledge of the traditional
instrument factor has no reason to be the same as that of the classical music audiophile which is different from
that of a heavy metal record seller.

They may also be complementary when they represent different sets of objects (people, work of art, de-
vices), that may entertain some relations, like musician performing music pieces and playing music instru-
ments.

But this heterogeneity should not prevent from interpreting knowledge, like the fact that people use different
natural languages and may have different state of mind does not fully prevent them to understand each others.
For a specific task, it may be useful to jointly use several of these ontologies together.

Heterogeneity may come from knowledge and data expressed:
– in different knowledge representation language (syntactic heterogeneity),
– with different vocabularies (terminological heterogeneity), or
– with different assertions (semantic heterogeneity).

Here, data is restricted to RDF and knowledge to OWL. Hence syntactic heterogeneity is not discussed.

The problem to solve is how to make sense of knowledge and data from heterogeneous sources. How to
interpret them.

This problem can be solved by imposing to the world a unique knowledge representation language, a unique
vocabulary and a unique ontology. However, this is both unrealistic and non desirable.

One could also consider putting all knowledge and data together. With respect to what has been seen in
the previous chapter, this corresponds to taking the set of graphs {Gi}i∈I and their ontologies {Oi}i∈I and
considering them as one graph ⋃i∈I Gi and one ontology ⋃i∈I Oi. This should lead to reduce the set of models
of the graphs and thus to be more informative. In theory this is possible, however this raises several problems:
– if the graphs use disjoint vocabularies, the set of models is not usefully reduced;
– the union of the graphs may be inconsistent (the set of models is empty);
– not everyone may want to provide their knowledge and not everyone has the capability to perform this.
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One less drastic way to deal with this problem consists of connecting ontologies through alignments ex-
pressing correspondences between their concepts. This allows for translating assertions across ontologies or
merging them. This can be seen as a network of ontologies related by alignments.

The goal of this chapter is to provide a formal account of such networks of ontologies. In particular, it estab-
lishes the semantics of alignments and the constraints this raises on the interpretation of distributed ontologies.

I first precisely define what are alignments through their syntax (§3.1.1) and semantics (§3.1.2) before
introducing networks of ontologies and their semantics (§3.2).

3.1 Connecting ontologies with alignments

Relations between data and knowledge may be mostly based on relations between their ontologies. The process
of finding the relations between ontologies is called ontology matching and the result of this process expressing
declaratively these relations is called an (ontology) alignment [EUZENAT and SHVAIKO 2013]. In addition,
finding the manifestation of the same object withing different data sets is called data interlinking.

3.1.1 Ontology alignments

This is covered in a detailed form in [EUZENAT 2007, Chapter 8] and [EUZENAT and SHVAIKO 2013].

Alignments express the correspondences between entities belonging to different ontologies. All definitions
here are given for alignments between two ontologies. The definitions can be straightforwardly extended by
using n-ary correspondences. A correspondence must consider the two corresponding entities and the relation
that is supposed to hold between them.

Since the related entities are an important part of alignments, they have to be defined. The matched entities
are connected but equivalent to those of the ontology language because it can be desirable to have a different
language for identifying the matched entities. Given an ontology language, the term entity language denotes
those entities that will be put in correspondence by matching. The expressions of this language will depend on
the ontology on which expressions are defined.

Definition 3.1 (Entity language). Given an ontology language L, an entity language QL is a function from
any ontology O ⊆ L which defines the matchable entities of ontology O.

The entity language can be simply made of all the formulas of the ontology language based on the ontology
vocabulary. It can restrict its scope to particular kinds of formulas from the language, for instance, atomic
formulas, or even to terms of the language, like class expressions. It can also restrict the entities to be only
named entities. This is convenient in the context of the semantic web to restrict entities to those identifiable
by their IRIs. The entity language can also be an extension of the ontology language: this can be a query
language, such as SPARQL [PRUD’HOMMEAUX and SEABORNE 2008], adding operations for manipulating
ontology entities that are not available in the ontology language itself, like concatenating strings or joining
relations. Finally, this entity language can combine both extension and restriction, e.g. by authorising any
boolean operations over named ontology entities.

In the following we will assume that each ontology interpretation can be extended to an interpretation of
the entity language associated with the ontology.

The next important component of the alignment is the relation that holds between the entities. We identify
a set of relations Θ that is used for expressing the relations between the entities. Matching algorithms primarily
use the equivalence relation (=) meaning that the matched objects are the same or are equivalent if these are
formulas. It is possible to use relations from the ontology language within Θ. For instance, using OWL, it is
possible to take advantage of the owl:equivalentClass, owl:disjointWith or rdfs:subClassOf relations in order to relate
classes of two ontologies. These relations correspond to set-theoretic relations between classes: equivalence
(=); disjointness (⊥); more general (≥). They can be used without reference to any ontology language.

With these ingredients, it is possible to define the correspondences that have to be found by matching
algorithms.
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Definition 3.2 (Correspondence). Given two ontologies O and O′ with associated entity languages QL(O)
and QL′(O′) and a set of alignment relations Θ, a correspondence is a triple of QL(O) ×Θ ×QL′(O′):

⟨e, r, e′⟩,

also noted
e r e′

The correspondence ⟨e, r, e′⟩ asserts that the relation r holds between the ontology entities e and e′. In the
following, for the sake of simplicity, I will restrict the presentation to alignments between OWL ontologies
with the entity language restricted to IRIs of the mentioned classes properties and possibly individuals, and the
correspondence relations θ = {≤,≥,�,=, ∈, ∋}. = is aimed at being used between individual instances: it is quite
commonly used in the context of linked data for expressing equivalence links (owl:sameAs) rather than ontology
alignments. It may also be used as a shortcut for two correspondences with relations ≤ and ≥. ∈ and ∋ relate
individuals to classes of other ontologies. This is very uncommonly used, but it is useful within later chapters.
However, results will also apply to other relations.

For example, a simple kind of correspondence is as follows:

o2:Musician ≤ foaf:Person

It asserts that what is denoted by the https://example.org/o2#Musician IRI is more specific than what is denoted by
http://xmlns.com/foaf/0.1/Person. Another example:

dc:creator = mo:author

asserts that what is denoted by the http://purl.org/dc/elements/1.1/creator IRI is equivalent to what is denoted by
http://purl.org/ontology/mo/author. Hence, this relation may apply between different types of entities (here classes
or properties) with different relations (= or ≤).

Finally, an alignment is defined as a set of correspondences between the same pair of ontologies.

Definition 3.3 (Alignment). Given two ontologiesO andO′, an alignment is a set of correspondences between
pairs of entities belonging to QL(O) and QL′(O′) respectively.

Figure 3.1 displays a possible alignment for a pair of ontologies. On the left-hand side is an ontology rather
focussing on selling (music) files and on the right-hand side a classification of music compositions following
the (US) library of congress classification. We make the simplification that these two classifications are about
the same objects (music pieces).

It can be expressed by the set of correspondences (alignment) of Listing 3.1:

cd:MP3 ≤ lc:Music rdf:label ≤ dc:title rdf:label ≥ dc:title
cd:Ragtime ≤ lc:Piano cd:BigBand ≤ lc:Orchestral cd:Symphony ≤ lc:Orchestra

cd:Forró ≤ lc:Trios cd:Forró ≤ lc:Secular cd:Blues ≤ lc:Secular
cd:Gospel ≤ lc:Sacred

Listing 3.1. Alignment of Figure 3.1.

It shows the inclusion of fragmentary genre of music used in the left-hand ontology into the forms of the right-
hand side ontology. Some types of music, e.g. cd:Forró, may be found in different types of music description
(lc:Trios and lc:Secular which covers all traditional songs). Conversely, some forms are used in various genres:
here lc:Orchestra can be found in cd:Classical and cd:Jazz.

Such correspondences may be useful for someone wanting to buy interpretation of compositions that can
be found in the catalogue of the library of congress.

In principle, the composers or lyricists of music pieces are not necessarily the same as their performers
although they have related types (o2:Musician and foaf:Person).
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Figure 3.1. Alignment between two fragments of ontologies. Correspondences are expressed by double blue arrows.

3.1.2 Semantics of ontology alignments

This is covered in a detailed form in [EUZENAT 2007, Chapter 10 and 11].

If alignments have to be used with ontologies, they have to be given a semantics. Intuitively, an alignment
expresses constraints between ontologies. It thus restricts the semantics of these ontologies to satisfy these con-
straints. The general semantic framework considered here will restrict the ontology models to those compatible
with the alignments.

The semantics of aligned ontologies must remain compatible with the classical semantics of ontologies:
connecting ontologies to other ontologies should not radically change the manner to interpret them. Indeed,
when ontologies are independent, i.e. not related with alignments, it is natural that their semantics is the classi-
cal semantics for these ontologies, i.e. a set of modelsM(O).

A model here is a map m from the entities of an ontology to a particular domain of interpretation. Such
models have to apply to all the elements of the entity languages used in the alignments.

There is no ‘standard’ semantics for ontology alignments. Different semantics provide alternative ways
to record the constraints imposed by alignments: through relations between domains of interpretation [GHI-
DINI and SERAFINI 1998; BORGIDA and SERAFINI 2003], through equalising functions [ZIMMERMANN and
EUZENAT 2006; ZIMMERMANN 2008], by imposing equal [LENZERINI 2002] or disjoint [CUENCA GRAU,
PARSIA, and SIRIN 2006] domains. These models have been compared in [ZIMMERMANN and EUZENAT
2006]. I provide here a general semantics for ontology alignment which reconciliates different semantics that
have been provided by different authors. Then I provide an example with the most simple one, the reduced
semantics.

For that purpose, each correspondence is interpreted with respect to models of each ontology [ZIMMER-
MANN 2013]. This interpretation has two purposes:
– providing an interpretation to the correspondence relations in Θ (which are independent from the ontology

semantics);
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– memorising the constraints imposed on models by the alignments.
Different semantics may be provided for alignments by defining differently ⊧∆ which specifies the satisfaction
of a correspondence µ by two models of the ontologies O and O′ (which is denoted by mO,mO′ ⊧∆ µ)

However, this course, only uses the reduced semantics. The reduced alignment semantics considers that the
entities of the different ontologies must be interpretable in the same domain of interpretation ∆. The semantics
thus simply interpret the correspondence relations over these (sets of) entities.

Definition 3.4 (Reduced interpretation of correspondences). In the language used as example, c and c′

stand for class names, o and o′ for individual names, and p and p′ for relation names. If mO and mO′ are
respective models of O and O′:

mO,mO′ ⊧∆ ⟨c,≤, c′⟩ iff [cιO ] ⊆ [c′ιO′ ]
mO,mO′ ⊧∆ ⟨c,≥, c′⟩ iff [cιO ] ⊇ [c′ιO′ ]
mO,mO′ ⊧∆ ⟨c,�, c′⟩ iff [cιO ] ∩ [c′ιO′ ] = ∅
mO,mO′ ⊧∆ ⟨p,≤, p′⟩ iff ⟦pιO⟧ ⊆ ⟦p′ιO′ ⟧
mO,mO′ ⊧∆ ⟨p,≥, p′⟩ iff ⟦pιO⟧ ⊇ ⟦p′ιO′ ⟧
mO,mO′ ⊧∆ ⟨o, ∈, c′⟩ iff oιO ∈ [c′ιO′ ]
mO,mO′ ⊧∆ ⟨c, ∋, o′⟩ iff o′ιO′ ∈ [cιO ]
mO,mO′ ⊧∆ ⟨o,=, o′⟩ iff oιO = o′ιO′

Hence, the semantics of two aligned ontologies may be given as a set of models which are pairs of compat-
ible models.

Definition 3.5 (Models of alignments). Given two ontologies O and O′ and an alignment A between these
ontologies, a model of this alignment is a pair ⟨mO,mO′⟩ ∈M(O)×M(O′), such that ∀µ ∈ A, mO,mO′ ⊧∆
µ.

This is noted mO,mO′ ⊧∆ A.
Correspondences in the alignment impose constraints to the set of acceptable models of the related on-

tologies, i.e. they select those models which are compatible with the models of the other ontology through the
alignment. Since they reduce the set of models of an aligned ontology, they increase the set of consequences.
Hence, connecting two ontologies together brings more consequences: it provides more information.

It is possible to define the consequence relation between an alignment and a correspondence as A ⊧∆ µ
iff ∀⟨mO,mO′⟩ such that mO,mO′ ⊧∆ A, mO,mO′ ⊧∆ µ. This notation can be extended to A ⊧∆ A′ iff
∀µ ∈ A′, A ⊧ µ.

Similarly as for ontologies, the semantics of alignments can be given by the relation ⊧∆. The corresponding
closure function is Cnα(A) = {µ ∣ A ⊧∆ µ}.

3.2 Networks of ontologies

These definitions can be generalised to an arbitrary number of alignments and ontologies captured in the con-
cept of a network of ontologies (or distributed system [GHIDINI and SERAFINI 1998; FRANCONI, KUPER,
LOPATENKO, and SERAFINI 2003]), i.e. sets of ontologies and alignments.

Definition 3.6 (Network of ontologies). A network of ontologies ⟨Ω,Λ⟩ is made of
– a set Ω of ontologies, and
– a set Λ of alignments between these ontologies.

The set of alignments in Λ between O and O′ is denoted by Λ(O,O′).
Figure 3.2 presents four simplified ontologies (in all examples, c ⊑ c′ denotes subsumption between concepts

c and c′, c�c′ denotes disjointness between concepts c and c′, and i <− c denotes membership of individual i to
concept c):
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O1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

foaf:Agent ⊑ ⊺1, o1:Work ⊑ ⊺1, o1:Device ⊑ ⊺1,
foaf:Person ⊑ foaf:Agent, foaf:Group ⊑ foaf:Agent, o1:Band ⊑ foaf:Group,

o1:Person�o1:Band, o1:Person�o1:Device, o1:Person�o1:Band,
o1:Band�o1:Device, o1:Band�o1:Work, o1:Device�o1:Work

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

O2 ={
o2:Ensemble ⊑ ⊺2, o2:Person ⊑ ⊺2, o2:Composer ⊑ o2:Person,

o2:Musician ⊑ o2:Person, o2:Pianist ⊑ o2:Musician, o2:Singer ⊑ o2:Musician
}

O3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

o3:MusicPerformingDev ⊑ o3:Device, o3:MusicrecordingDevice ⊑ o3:Device,
o3:MusicInstrument ⊑ o3:MusicPerformingDev, o3:MusicPlayer ⊑ o3:MusicPerformingDev,

o3:Phone ⊑ o3:MusicPerformingDev, o3:Phone ⊑ o3:MusicRecordingDev,
o3:Voice ⊑ o3:MusicInstrument, o3:Haegum ⊑ o3:MusicInstrument

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
O4 ={ o4:Song ⊑ o4:MusicPiece, o4:Theme ⊑ o4:MusicPiece }

together with four alignments A1,2, A2,3, A1,3, and A1,4 which can be described as follows:

A1,2 ={ o1:Band ≥ o2:Ensemble, o1:Person ≥ o2:Person }
A2,3 ={ o2:Singer ≤ o3:Voice }
A1,3 ={ o1:Device ≥ o3:Device }
A1,4 ={ o1:Work ≥ o4:MusicPiece }

O1 ⊺1

foaf:Agent

foaf:Person foaf:Group

o1:Band

o1:Person

o1:Work

o1:Device

�
�

�

�

�

�

O2

⊺2

o2:Ensemble o2:Person

o2:Musician

o2:Pianist o2:Singer

o2:Composer O3o3:Device

o3:MusicPerformingDev
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≤

≤
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Figure 3.2. A network of ontologies N1 made of four ontologies (O1, O2, O3, and O4) and four alignments (A1,2, A1,3,
A1,4, and A2,3).

Models of networks of ontologies extend models of alignments. They select compatible models for each
ontology in the network. Compatibility consists of satisfying all the alignments of the network.
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Definition 3.7 (Models of networks of ontologies). Given a network of ontologies ⟨Ω,Λ⟩, a model of ⟨Ω,Λ⟩
is a family of models {mO}O∈Ω indexed by Ω, such that:

– ∀O ∈ Ω, mO ∈M(O), and
– ∀A ∈ Λ(O,O′), mO,mO′ ⊧∆ A.

The set of models of ⟨Ω,Λ⟩ is denoted byM(⟨Ω,Λ⟩).
In that respect, alignments act as model filters for the ontologies. They select the ontology interpretations

which are coherent with the alignments. This allows for transferring information from one ontology to another
since reducing the set of models entails more consequences in each aligned ontology.

Hence, a model for the network of ontologies of Figure 3.2 with ∆ as defined in Definition 3.4, is
⟨{m1,m2,m3,m4},∆⟩ built on any models m1, m2, m3 and m4 of ontology O1, O2, O3 and O4 such
that m2(o2:Ensemble) ⊆ m1(o1:Band), m2(o2:Person) ⊆ m1(o1:Person), m2(o2:Singer) ⊆ m3(o3:Voice),
m3(o3:Device) ⊆m1(o1:Device) and m4(o4:MusicPiece) ⊆m1(o1:Work).

3.3 Consistency, entailment, and closure

From the alignment semantics, it is possible to decide if a network of ontologies is consistent or if a statement
or correspondence is a consequence of the network.

3.3.1 Global and local consistency

An ontology or an alignment are consistent if they have a model, inconsistent otherwise. Similarly, a network
of ontologies is consistent if it has a model.

Definition 3.8 (Local consistency, global consistency). A network of ontology ⟨Ω,Λ⟩ is locally inconsistent
if

– there exists O ∈ Ω such that O is inconsistent, or
– there exists A ∈ Λ such that A is inconsistent.

It is globally inconsistent if it is locally consistent and has no model. Otherwise, it is consistent.

By extension, an ontology or an alignment is consistent within a network of ontologies if the network of
ontologies is consistent. Hence even if an ontology is consistent when taken in isolation, it may be inconsistent
when inserted in a network of ontologies. Moreover, if one of the ontologies in the network is inconsistent, then
the network as a whole is inconsistent: it cannot have a model. A network may be locally consistent, i.e. all
ontologies and alignments have models, but globally inconsistent if their models are not compatible, i.e. they
will interpret the same entity differently.

The network of ontologies presented in Figure 3.2 is incoherent since the class o2:Singer is nec-
essary empty (it entails o2:Singer ⊑ �), i.e. for any family of models {m1,m2,m3,m4} of N1 =
⟨{O1,O2,O3,O4},{A1,2,A1,3,A2,3,A1,4}⟩, m2(o2:Singer) ⊆ ∅. This is indeed the case, O2 ⊧ o2:Singer ⊑
o2:Person, but as mentioned at the end of Section 3.2 (p.33) m2(o2:Person) ⊆ m1(o1:Person), so
m2(o2:Singer) ⊆ m1(o1:Person). Moreover, m2(o2:Singer) ⊆ m3(o3:Voice), but m3(o3:Voice) ⊆ m3(o3:Device)
and m3(o3:Device) ⊆ m1(o1:Device) hence m2(o2:Singer) ⊆ m1(o1:Device). Thus, m2(o2:Singer) ⊆
m1(o1:Person) ∩m1(o1:Device) = ∅.

Figure 5.3 (p.60) displays a subnetwork N2 = ⟨{O1,O
′
2,O3},{A1,2,11,3,A2,3}⟩ of N1 (Figure 3.2) to

which O2 is added one statement: O′2 = O2 ∪ {d2:Nina <− o2:Singer}. A model of such a network would
be a family of models {m1,m2,m3} of {O1,O

′
2,O3} satisfying the alignments A1,2 , A1,3 and A2,3. But,

all models m2 of O′2 must satisfy m2(d2:Nina) ⊆ m2(o2:Person) because m2(d2:Nina) ∈ m2(o2:Singer) ⊆
m2(o2:Musician) ⊆ m2(o2:Person). This makes that m2(d2:Nina) ∈ m1(o1:Person) due to Alignment A1,2.
Moreover, due to Alignment A2,3, m2(d2:Nina) ∈ m3(o3:Voice) and m3(o3:Voice) ⊆ m3(o3:MusicInstrument) ⊆
m3(o3:MusicPerformingDev) ⊆ m3(o3:Device), thus m2(d2:Nina) ∈ m3(o3:Device). In addition, due to Alignment
A1,3, m3(o3:Device) ⊆ m1(o1:Device), which means that m2(d2:Nina) ∈ m1(o1:Device). However, all models
m1 of O1 satisfy m1(o1:Person) ∩m1(o1:Device) = ∅, hence it is not possible to find three models m1, m2 and
m3 which satisfy all these constraints. Thus, there is no model for this network of ontologies.
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This network is inconsistent in the reduced interpretation, though none of its ontologies nor alignments is
inconsistent. This is what is called a global inconsistency, by opposition to local inconsistency.

In addition, taking any of the ontologies with only the alignments which involve them, e.g. for O′2,
⟨{O1,O

′
2,O3},{A1,2,A2,3}⟩, is a consistent network of ontologies.

3.3.2 Correspondence and formula entailment

There are two notions of consequences called ω-consequence and α-consequence.
The ω-consequences of an ontology in a network are formulas that are satisfied in all models of the ontology

selected by the network.

Definition 3.9 (ω-consequence). An assertion δ is the ω-consequence of an ontologyO in a network of ontolo-
gies ⟨Ω,Λ⟩ if

∀⟨mx⟩x∈Ω ∈M(⟨Ω,Λ⟩),mO ⊧OWL δ.

This is noted ⟨Ω,Λ⟩ ⊧∆ δ/O. The set of ω-consequences for an ontology O is CnωΩ,Λ(O). The ω-closure of
a network of ontologies is its set of ω-consequences: the assertions which are satisfied in all models of the
network of ontologies.

According to these definitions, Cnω(O) = Cnω
⟨{O},∅⟩(O). These ω-consequences are larger than the clas-

sical consequences of the ontology (∀O ∈ Ω,o ⊆ Cnω(O) ⊆ CnωΩ,Λ(O)) because they rely on a smaller set of
models.

The simple consequences of the ontology O2 are:

Cnω(O2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

o2:Ensemble ⊑ ⊺2, o2:Person ⊑ ⊺2, o2:Composer ⊑ o2:Person,
o2:Musician ⊑ o2:Person, o2:Pianist ⊑ o2:Musician, o2:Singer ⊑ o2:Musician,

o2:Musician ⊑ ⊺2, o2:Composer ⊑ ⊺2, o2:Pianist ⊑ ⊺2,
o2:Singer ⊑ ⊺2, o2:Pianist ⊑ o2:Person, o2:Singer ⊑ o2:Person

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

while within N1 of Figure 3.2, there are even more consequences:

CnωN1
(O2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o2:Ensemble ⊑ ⊺2, o2:Person ⊑ ⊺2, o2:Composer ⊑ o2:Person,
o2:Musician ⊑ o2:Person, o2:Pianist ⊑ o2:Musician, o2:Singer ⊑ o2:Musician,

o2:Musician ⊑ ⊺2, o2:Composer ⊑ ⊺2, o2:Pianist ⊑ ⊺2, o2:Singer ⊑ ⊺2,
o2:Pianist ⊑ o2:Person, o2:Singer ⊑ o2:Person, o2:Ensemble�o2:Person,

o2:Ensemble�o2:Musician, o2:Ensemble�o2:Composer, o2:Ensemble�o2:Singer,
o2:Ensemble�o2:Pianist, o2:Singer�o2:Person, o2:Singer�o2:Musician,

o2:Singer�o2:Singer

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Similarly, α-consequences are correspondences which are consequences of networks of ontologies [EU-
ZENAT 2015].

Definition 3.10 (α-consequence). A correspondence µ between two ontologiesO andO′ is an α-consequence
of a network of ontologies ⟨Ω,Λ⟩ iff

∀⟨mx⟩x∈Ω ∈M(⟨Ω,Λ⟩),mO,mO′ ⊧∆ µ

This is noted ⟨Ω,Λ⟩ ⊧∆ µ. The set of α-consequences between O and O′ is denoted by CnαΩ,Λ(O,O′). For
homogeneity of notation, we will use CnαΩ,Λ(A) for denoting CnαΩ,Λ(O,O′) when A ∈ Λ(O,O′). The α-
closure of a network of ontologies is its set of α-consequences: the correspondences which are satisfied in all
models of the network of ontologies.

The closure of the alignment A1,2 = {o1:Band ≥ o2:Ensemble, o1:Person ≥ o2:Person}, with respect to the two
ontologies it is related to would be:



3.4 Local models from the standpoint of an ontology 35

Cnα⟨{O1,O2},{A1,2⟩}
(A1,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o1:Band ≥ o2:Ensemble, o1:Person ≥ o2:Person, foaf:Group ≥ o2:Ensemble,
foaf:Agent ≥ o2:Ensemble, ⊺1 ≥ o2:Ensemble, foaf:Person ≥ o2:Person,

foaf:Agent ≥ o2:Person, ⊺1 ≥ o2:Person, o1:Person ≥ o2:Composer,
foaf:Person ≥ o2:Composer, foaf:Agent ≥ o2:Composer,⊺1 ≥ o2:Composer,

o1:Person ≥ o2:Musician, foaf:Person ≥ o2:Musician, foaf:Agent ≥ o2:Musician,
⊺1 ≥ o2:Musician, o1:Person ≥ o2:Pianist, foaf:Person ≥ o2:Pianist,

foaf:Agent ≥ o2:Pianist, ⊺1 ≥ o2:Pianist, o1:Person ≥ o2:Singer,
foaf:Person ≥ o2:Singer, foaf:Agent ≥ o2:Singer,⊺1 ≤ o2:Singer,

o1:Device�o2:Person, o1:Band�o2:Person, o1:Work�o2:Person,
o1:Device�o2:Composer, o1:Band�o2:Composer, o1:Work�o2:Composer,

o1:Device�o2:Musician, o1:Band�o2:Musician, o1:Work�o2:Musician,
o1:Device�o2:Pianist, o1:Band�o2:Pianist, o1:Work�o2:Pianist,
o1:Device�o2:Singer, o1:Band�o2:Singer, o1:Work�o2:Singer

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In comparison, its closure within the network of ontology N1 of Figure 3.2 would only add two correspon-
dences:

CnαN1
(A1,2) = Cnα⟨{O1,O2},{A1,2⟩}

(A1,2) ∪ {o1:Device ≥ o2:Singer, o1:Person�o2:Singer}

It is noteworthy that, if the alignment A′1,2 is empty, this still generates correspondences between O1 and O2:

Cnα⟨{O1,O2,O3,O4},{A′1,2,A1,3,A1,4,A2,3}⟩
(A′1,2) ={

o1:Device ≥ o2:Singer, ⊺1 ≥ o2:Singer, o1:Band�o2:Singer,
o1:Work�o2:Singer, o1:Person�o2:Singer

}

According to these definitions, Cnα(A) = Cnα
⟨{O,O′},{A}⟩(A) when A ∈ Λ(O,O′). α-consequences of

an alignment are defined as the α-consequences of the network made of this alignment and the two on-
tologies it connects. The α-consequences of a particular alignment are usually larger than the alignment
(∀A ∈ Λ,A ⊆ Cnα(A) ⊆ CnαΩ,Λ(A)). If the alignment is not satisfiable, then any correspondence is one
of its α-consequences.

Finally, the closure function of a network of ontology is

Cn(⟨Ω,Λ⟩) = ⟨{CnωΩ,Λ(O)}O∈Ω ,CnαΩ,Λ(Λ(O,O′))O,O′∈Ω)⟩.

The closure of a network of ontologies may introduce non empty alignments between ontologies which
were not previously connected or empty. For instance, Figure 3.3 shows (in dashed) new correspondences
⟨o2:Person,�, o4:MusicPiece⟩ and ⟨o4:MusicPiece,�, o3:Device⟩ between previously non aligned ontologiesO2 and
O4 and O3 and O4, a new correspondence ⟨o2:Singer,≤, o3:MusicPerformingDev⟩ within existing alignment A2,3

and an additional statement o2:Ensemble owl:disjointWith o2:Person which is not entailed by O2 alone. They are all
entailed by the N1 network, i.e. they hold in all models of the network.

3.4 Local models from the standpoint of an ontology

This definition coincides with a coherent model of the world in which all models satisfy all alignments. This is
the standpoint of an omniscient observer and it corresponds to the global knowledge of a distributed system as
defined in [FAGIN, HALPERN, MOSES, and VARDI 1995].

However, if one ontology is inconsistent then the network of ontologies has no model. Therefore, even
agents not connected to the inconsistent ontology cannot compute reasonable models. Moreover, an agent
knowing an ontology and the related alignments would like to use the system by gathering information from
its neighbours and considering only the models of this information. Thereby, it would be able to compute
consequences through some complete deduction mechanisms. This is important when asking agents to answer
queries with respect to local knowledge (§3.4). This is the knowledge an agent can achieve by communicating
only with the agents it is connected to in a network of ontologies.

From that standpoint, there can be several ways to select the acceptable models given the distributed system
(here, X ⊧∆ λ(O,O′) is to be interpreted as ∀A ∈ Λ(O,O′),X ⊧∆ A):
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Figure 3.3. Alignment inference in the network of ontologiesN1 of Figure 3.2. The network now contains correspondences
between O1 and O4 and O4 and O3 which were not aligned before. It also contains additional correspondences, e.g.
o2:Singer ≤ o3:MusicPerformingDev, in A2,3. O2 contains new statements, e.g. o2:Ensemble�o2:Person, entailed by the
network, but not the ontology alone.

M0
Ω,Λ(O) =M(O)

M∃
Ω,Λ(O) = {m ∈M(O);∀O′ ∈ Ω,∃m′ ∈M(O′);m,m′ ⊧∆ λ(O,O′)}

M∃∗
Ω,Λ(O) = {m ∈M(O);∀O′ ∈ Ω,∃m′ ∈M∃∗

Ω,Λ(O′);m,m′ ⊧∆ λ(O,O′)}
M↑∃

Ω,Λ(O) = {m ∈M(O);∃
Ð→m ∈M(⟨Ω,Λ⟩);Ð→mO =m}

M∀∗
Ω,Λ(O) = {m ∈M(O);∀O′ ∈ Ω,∀m′ ∈M∀∗

Ω,Λ(O′);m,m′ ⊧∆ λ(O,O′)}
M∀

Ω,Λ(O) = {m ∈M(O);∀O′ ∈ Ω,∀m′ ∈M(O′);m,m′ ⊧∆ λ(O,O′)}
M↑∀

Ω,Λ(O) = {m ∈M(O);∀
Ð→m ∈M(⟨Ω,Λ⟩);Ð→mO =m}

These approaches have been ordered from the most optimistic to the most cautious. M∃
Ω,Λ selects the

models that satisfy each alignment in at least one model of the connected ontology. M∀
Ω,Λ is very strong

since all alignments must be satisfied by all models of the connected ontologies.M∃∗
Ω,Λ andM∀∗

Ω,Λ are fixed
point characterisations that, instead of considering the initial models of the connected agents, consider their
selected models by the same function. This contributes to propagating the constraints to the entire connected
components of the network of ontologies. While for M∃∗

Ω,Λ this strengthens the constraints, for M∀∗
Ω,Λ, this

relaxes them with respect toM∀
Ω,Λ. Here, an inconsistent model is a problem only to related agents and only

for versionsM∃
Ω,Λ, andM∃∗

Ω,Λ, which require the existence of a model for each related ontology.M↑∃

Ω,Λ and
M↑∀

Ω,Λ are global versions, which consider models of the whole network of ontologies supporting the filtered
models. The satisfaction of λ(O,O′) is entailed by the choice of m and Ð→mO′ in a model of the network.

Each of these options allows for specialising the semantics of ontologies in a network based on the models
of networks of ontologies considered above.

One can be even more restrictive by considering only a subset of the possible models of each ontology.
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Conclusion

In this chapter, we built on the semantics for data and ontologies, to provide:
1. A language for aligning ontologies: A ∋ eRe′ (correspondence)
2. A simple semantics for alignments: A ⊧∆ eRe′, A ⊧∆ A′, A,O,O′ ⊧∆ δ

3. A language for expressing networks of ontologies ⟨Ω,Λ⟩
4. A semantics for such networks: ⟨Ω,Λ⟩ ⊧∆ eRe′, ⟨Ω,Λ⟩ ⊧∆ δ
This defines what is entailed by a network of ontologies and their consistency even if ontologies are expressed
with heterogeneous vocabularies.

For an agent, participating in a network, this restricts the models of its knowledge, hence provides more
information (consequences).

This will be put to work in the next chapter to answer queries.

Quiz
– What does it mean for a correspondence to be the consequence of an alignment?
– Can a network of ontologies entail a correspondence between two ontologies between which there is no

alignment?
– If a correspondence is entailed by an alignment, is it also entailed by any network of ontologies containing

this alignment (and the two ontologies it connects)?
– Can adding a correspondence to an alignment have an effect on the models of related ontologies, and if yes

which one?
– Is it possible that a network of ontologies be inconsistent?
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4

Distributed queries

IN WHICH WE CROSS THESE BRIDGES, EXPLOITING NETWORKS OF ONTOLOGIES AND LINKED DATA, IN

ORDER TO BRING BACK ANSWERS TO QUERIES — THE RELATIONSHIP BETWEEN QUERY EVALUATION AND

SEMANTICS BECOMES CLEAR.

One way to take advantage of knowledge is to answer queries. Such queries can be answered directly against
the data graph known by the agent exploiting its ontology. However, it may be more informative to relay this
query to other agents. In case they use heterogeneous ontologies, alignments of a network of ontologies may
also be used for translating queries.

For that purpose, a query language is needed. I will concentrate here on a small subset of SPARQL. Al-
though only one language is considered, I will discuss several ways to interpret, or more precisely evaluate,
these queries when putting them into context.

Query answers must be defined with respect to the semantics of the languages used for expressing knowl-
edge. The most basic query evaluation, simply match the query with the RDF graph and extract answers. This
corresponds to the semantics of entailment. However, the same query may be evaluated in the context of an
ontology, against several graphs at once or within a network of ontology. In each case, the answers will be
provided with respect to the semantics of these components.

This is covered in another form in [EUZENAT 2007, Chapter 4 and 5].

4.1 SPARQL queries

I define in the following subsections the syntax of a small subset of the SPARQL language for expressing
queries. This subset is simply that of conjunctive queries. It is sufficient to our purpose since it will allow us to
provide different semantics to such queries in different, and in particular distributed, contexts.

For a complete description of SPARQL, the reader is referred to the SPARQL specification
[PRUD’HOMMEAUX and SEABORNE 2008] or to [PÉREZ, ARENAS, and GUTIERREZ 2009; POLLERES 2007]
for its formal semantics. Unless stated otherwise, I concentrates on SPARQL 1.0, but some features considered
in the presented languages are now integrated in SPARQL 1.1 [HARRIS and SEABORNE 2013; GLIMM and
OGBUJI 2013].

The heart of SPARQL queries is graph patterns [PRUD’HOMMEAUX and SEABORNE 2008]. Conjunctive
queries simply use basic graph patterns: a set of triple patterns (or a GRDF graph).

Definition 4.1 (Basic graph pattern). A basic graph pattern is an RDF graph in which some blank nodes are
replaced by variables (noted ?x).

In the following, I treat blank nodes in RDF graphs simply as constants (as if they were IRIs) as done in the
official specification of SPARQL without considering their existential semantics.

A conjunctive query is simply the projection of some variables of a basic graph pattern.

Definition 4.2 (Conjunctive query). Given a basic graph pattern q, a tuple Ð→x of variables in q, and a refer-
ence u to a graph, a conjunctive query has the form:
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SELECT Ð→x FROM u WHERE q

such a query will also be noted q[Ð→x ].

The query q1 (Listing 4.1) asks for all pairs of resources related by the mo:member relation, that is all
members of a musical ensemble:

SELECT ?x , ?y WHERE { ?x mo: member ?y . }

Listing 4.1. Simple query.

Although, sequences of variables are considered, they can be thought of as sets. Ð→x ∩Ð→x ′ identifies variables
common to two queries and Ð→x ∖Ð→x ′ those specific to one query.

Query q2 (Listing 4.2) retrieves all titles of music pieces composed by someone named “Thelonius”:
SELECT ? t i t l e
WHERE {

? t1 mo: composer ?g3 .
?g3 f o a f : name ” Thelonious ” .
? t1 dc : t i t l e ? t i t l e .

}

Listing 4.2. Join query.

Query q3 (Listing 4.3) retrieves the name of a member of a band, and the name of that band, such that a
member of the band has a relation with a piece of music that the band has performed:

SELECT ?bnm, ? t1
WHERE {

?g3 f o a f : name ” Thelonious ” .
?b1 mo: member ?g3 .
?g3 ? r e l ? t1 .
?g1 f o a f : name ?bnm .
?b1 mo: member ?g1 .
?b1 mo: performed ? t1 .

}

Listing 4.3. Graph query.

The query q3 graph pattern corresponds to the GRDF graph of Figure 2.2 (p. 10) with blank nodes turned into
variables.

Intuitively, an answer to a SELECT query is an assignment of the variables in
Ð→
B by terms of the RDF graph

G such that, under these assignments, P is entailed by the graph identified by u.
Beside conjunctive queries, SPARQL provides other query forms.

Definition 4.3 (SPARQL query forms). Given a SPARQL graph pattern P , a tuple Ð→x of variables in P , a
IRI u and a basic graph pattern Q,

ASK FROM u WHERE P
SELECT Ð→x FROM u WHERE P

CONSTRUCT Q FROM u WHERE P

are SPARQL queries.

A CONSTRUCT query is used for building an RDF graph from the set of answers. ASK returns TRUE if there
is a answer to a given query and FALSE otherwise. In addition, DESCRIBE is used for describing a resource RDF
graph.

The sample query of Listing 4.4:
ASK
WHERE {

?piece mo: composer ?musician .
?ensemble mo: member ?musician .
?ensemble mo: performed ?piece .

}

Listing 4.4. ASK query.

returns TRUE if the composer of a music piece has performed it within an ensemble, FALSE otherwise.
The CONSTRUCT query of Listing 4.5:
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CONSTRUCT {
?musician1 mo: playedWith ?musician2 .
?musician2 mo: playedWith ?musician1 .
?musician1 mo: p layedIn ?ensemble .
?musician2 mo: p layedIn ?ensemble .

} WHERE {
?ensemble mo: member ?musician1 .
?ensemble mo: member ?musician2 .

}

Listing 4.5. CONSTRUCT query.

constructs the RDF graph of the mo:playedWith relation, i.e. all musicians having played in the same ensemble,
and mo:playedIn, i.e. the converse of mo:member relation. The mo:playedWith relation is reflexive for those who
have played in an ensemble.

4.2 Genuine SPARQL semantics: query evaluation

In the following, I characterize query answering with SPARQL following [PÉREZ, ARENAS, and GUTIERREZ
2009]. The approach relies upon the correspondence between GRDF entailment and maps from RDF graph of
the query graph patterns to the RDF knowledge base.

Definition 4.4 (Assignment (or map)). A variable assignment is a map σ ∶ X → V , such that X ⊆ V and
V ⊆ T .

If σ is an assignment, then the domain of σ, denoted by dom(σ), is the subset of T on which σ is defined.
The restriction of σ to a set of terms X is defined by

σ∣X = {⟨x, y⟩ ∈ σ∣ x ∈X}

If σ were a relational table, then σ∣X = πX(σ).
Assignment are extended from variables to basic graph patterns.

Definition 4.5 (Application of a map to a basic graph pattern). Given a variable assignment σ ∶ X → V
and a basic graph pattern P , σ(P ), the application of σ to P is defined by:

σ(P ) = {σ(t); t ∈ P} if P is an RDF graph

σ(⟨s, p, o⟩) = ⟨σ′(s), σ′(p), σ′(o)⟩ if P is a triple

σ′(x) = σ(x) if x ∈ dom(σ)
σ′(x) = x otherwise.

As usual for this kind of query language, an answer to a query is an assignment of distinguished variables
(those variables in the SELECT part of the query). Such an assignment is a map from variables in the query to
nodes of the graph. The answers to a basic graph pattern query are those maps whose application warrants the
entailment of the graph pattern by the queried graph.

The SPARQL semantics may be given with respect to an entailment relation ⊧ which can be replaced by
a concrete relation defined on the base case, i.e. basic graph patterns. In the case of SPARQL, this entailment
relation is GRDF entailment.

Definition 4.6 (Answer to a SPARQL SELECT query [ALKHATEEB, BAGET, and EUZENAT 2009]). Let
q[Ð→x ] be a conjunctive query and G be an RDF graph, then the set of answers to this query is

A(q[Ð→x ],G) = {σ∣Ð→x ∣ G ⊧GRDF σ(q)}.

This definition is a semantic characterization of SPARQL answers.
The evaluation of the queries of Listing 4.1-4.3 against the graph G of Figure 2.1 provides the following

answers:
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A(q1[?x, ?y],G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{⟨?x, d2:g1⟩, ⟨?y, d2:b1⟩},
{⟨?x, d2:g3⟩, ⟨?y, d2:b1⟩},
{⟨?x, d2:g2⟩, ⟨?y, d2:b2⟩},
{⟨?x, d2:g3⟩, ⟨?y, d2:b2⟩}

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

A(q2[?title],G) = {{⟨?title, ”Ruby, my dear”)⟩}}

A(q3[?bnm, ?t1],G) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{⟨?bnm, ”John”)⟩, ⟨?t1, ”Ruby, my dear”)⟩},
{⟨?bnm, ”Thelonius”)⟩, ⟨?t1, ”Ruby, my dear”)⟩},

{⟨?bnm, ”Art”)⟩, ⟨?t1, ”Ruby, my dear”)⟩}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Definition 4.7 (Answer to a ASK/CONSTRUCT SPARQL query). Let ASK FROM u WHERE p be a SPARQL
query with p a SPARQL graph pattern and G be the (G)RDF graph identified by the IRI u, then the (boolean)
answer to this query is

AASK(q[Ð→x ],G) = ∃σ; G ⊧GRDF σ(q)
Let CONSTRUCT p FROM u WHERE q be a SPARQL query with q a SPARQL graph pattern, p a (G)RDF graph,
and G be the (G)RDF graph identified by the IRI u, then the answer to this query is

ACONST (q[Ð→x ],G, p) = ⋃
σ; G⊧GRDFσ(q)

σ(p)

Once given the semantics of a query, it is possible to compare two queries given their set of answers.

Definition 4.8 (Query containment). A query q[Ð→x ] is contained in a query q′[Ð→x ] (noted q[Ð→x ] ⊆ q′[Ð→x ]), if
∀G, A(q[Ð→x ],G) ⊆ A(q′[Ð→x ],G).
Query containment is very useful for manipulating queries, e.g. replacing a query by another equivalent query
for optimisation.

It can be shown that query q4[?bnm, ?t1] of Listing 4.6:
SELECT ?bnm, ? t1
WHERE {

?g3 f o a f : name ” Thelonious ” .
?b1 mo: member ?g3 .
?g3 ? r e l ? t1 .
?g3 f o a f : name ?bnm .
?b1 mo: performed ? t1 .

}

Listing 4.6. Graph query.

is contained in query q3[?bnm, ?t1], indeed, since ?g3 is a member of the band, then it (”Thelonious”) is always
an answer. However, q3 contains more answers such as ”John” or ”Art” in Figure 4.1.

4.2.1 Computation

In order to evaluate the complexity of query answering, the following problem, usually named query evaluation
but better named ANSWER CHECKING, is defined:
Problem: A-ANSWER CHECKING
Input: an RDF graph G, a SPARQL graph pattern q, a tuple of variables Ð→x , and a map σ.
Question: Does σ ∈ A(q[Ð→x ],G)?

This problem has usually the same complexity as checking if an answer exists.
The complexity of checking RDF-entailment and GDRF-entailment is NP-complete [GUTIERREZ, HUR-

TADO, and MENDELZON 2004]. This means that A-ANSWER CHECKING when queries are reduced to ba-
sic graph patterns is NP-complete. For full SPARQL, the problem has been shown to be PSPACE-complete
[PÉREZ, ARENAS, and GUTIERREZ 2009].

Figure 4.1 shows the projections for answering the queries q1 of Listing 4.1 and q3 of Listing 4.3 against
Graph G of Figure 2.1.
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Figure 4.1. Conjunctive query evaluation through homomorphism.

4.3 Query evaluation modulo ontology

The genuine evaluation of SPARQL queries has only been considered with respect to a simple RDF graph
(data). However, graphs may be expressed with respect to some ontology which should be used to interpret its
meaning. Similarly, it may be useful to interpret the vocabulary of the query with respect to this ontology. This
would allow the query engine to reason for answering queries. This may be useful, for instance, to answer all
objects belonging to a class and not only those which are asserted to belong to that class.

For instance, one may want to interpret the query q of Listing 4.7:
SELECT ?x , ?y
WHERE {

?x r d f : type mo: P i a n i s t .
?y r d f : type mo: JazzTheme .
?x mo: hasComposed ?y .
?e mo: member ?x .
?e mo: performed ?y .

}

Listing 4.7. Query modulo ontology.

against the graph G of Figure 4.2.
In principle, A(q[?x, ?y],G) = ∅ because no object is asserted to be a mo:Pianist nor a mo:JazzTheme and

mo:hasComposed is not in the graph either. Hence, it is impossible to find a homomorphism between q and G.
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However, it is possible to evaluate this query against Ontology O of Figure 2.6 (p.21). On Figure 4.2, the
edges added in dashed are OWL-entailed byO∪G. They correspond to the inferences discussed p. 24, and thus
comply with the semantics of OWL. This provides a homomorphism σ.

There are actually two homomorphisms: one mapping ?e to d2:b1 and the other to d2:b2. However, since the
projection does not retain ?e, this makes only one answer: AO(q[?x, ?y],G) = {⟨d2:g3, d4:t1⟩}.
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Figure 4.2. Query q has no answer in graph G ∪O. However, when G is complemented (in dashed) by assertions entailed
by the ontology O of Listing 2.7, it is possible to provide a map σ.

What does it mean to take into account the ontology in which the graph is expressed? What does it mean to
use this ontology to interpret the query?

Answering such queries by taking into account the ontology requires:
– to evaluate the query with the graph augmented by the ontology, and
– to evaluate it with OWL entailment.

Definition 4.9 (Answer to a SELECT query modulo ontology). Let q[Ð→x ] be a conjunctive query,G an RDF
graph possibly containing ontological statements, then the set of answers to q modulo ontology in G is

AO(q[Ð→x ],G) = {σ∣Ð→x ∣ G ⊧OWL σ(q)}.

The ⊧ now has a different meaning because it considers the models of the RDF graph in the OWL semantics.

SPARQL 1.1 has introduced the concept of entailment regime [GLIMM and OGBUJI 2013] for defining this.
It is slightly more sophisticated than what is presented here since it pays attention at limit cases, such as when
the graph and the ontology are inconsistent.

4.4 Query evaluation over several data sources

This is quickly discussed in [EUZENAT 2007, Chapter 12].
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Data and ontologies may be distributed in several sources. It is possible that some sources contain some
answers to a query and other sources contain other answers. Answering in a more extensive way to queries
requires to exploit all of these sources. It is thus necessary to provide the semantics of querying against several
sources which are as many RDF graphs.

Consider the query q of Listing 4.8:
SELECT ?x , ?y
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type f o a f : Group .
?y f o a f : member ?x .

}

Listing 4.8. Query q to be dispatched.

expressed in Figure 4.3. This query can simply be sent to various sources: O1 ∪G1, O2 ∪S ∪G2, O3 ∪G3, and
O4 ∪G4 yielding the following answers:
– AO(q[?x, ?y],G1 ∪O1) = {⟨d1:g7, d1:b4⟩, ⟨d1:g5, d1:b3⟩}
– AO(q[?x, ?y],G2 ∪ S ∪O2) = {⟨d2:g1, d2:b1⟩, ⟨d2:g3, d2:b1⟩, ⟨d2:g2, d2:b2⟩, ⟨d2:g3, d2:b2⟩}
– AO(q[?x, ?y],G3 ∪O3) = ∅
– AO(q[?x, ?y],G4 ∪O4) = ∅

Hence, AO
∪ (q[Ð→x ],{G1 ∪ O1,G2 ∪ S ∪ O2,G3 ∪ O3,G4 ∪ O4}) = AO(q[?x, ?y],G1 ∪

O1) ∪ AO(q[?x, ?y],G2 ∪ S ∪ O2) ∪ AO(q[?x, ?y],G3 ∪ O3) ∪ AO(q[?x, ?y],G4 ∪ O4) =
{⟨d2:g1, d2:b1⟩, ⟨d2:g3, d2:b1⟩, ⟨d2:g2, d2:b2⟩, ⟨d2:g3, d2:b2⟩, ⟨d1:g7, d1:b4⟩, ⟨d1:g5, d1:b3}.

These graphs may be redundant, i.e. providing several times the same answer, contradictory, i.e. put together
they have no model, or complementary, they only provide part of the answers.

The question is what is the meaning (what are the answers) of a query q[Ð→x ] evaluated against several
graphs G1, . . .Gn (noted {Gi}i∈I )? The problem is how to evaluate them so that they provide these answers. It
can be simply solved by evaluating the query against all the data sources and collecting the answers. Figure 4.3
provide an example of such a situation.

Definition 4.10 (Simple distributed answers to a SELECT query modulo ontology). Let q[Ð→x ] be a con-
junctive query, and {Gi}i∈I a set of RDF graphs, then the set of answers to this query is

AO
∪ (q[Ð→x ],{Gi}i∈I) =⋃

i∈I

AO(q[Ð→x ],Gi).

It is possible that some answers can be computed from the union of the graph, but not from any of the
sources independently. This is what could cause

AO
∪ (q[Ð→x ],{Gi}i∈I) ⊆ AO(q[Ð→x ],⋃

i∈I

Gi).

In order to answer queries in a truly distributed manner, it is necessary to be able to combine answers to
subqueries. For this, it is first necessary to partition queries in sets of subsqueries.

Definition 4.11 (Query partition). Given a query q[Ð→x ] and a set of graphs {Gi}i∈I , a partition of the query
q[Ð→x ] over {Gi}i∈I is a set of pairs {⟨qj[Ð→x j],Gj⟩}j∈J such that

– J ⊆ I ,
– qj ⊆ q is a subgraph of q using only the vocabulary Vj of graph Gj , and
– each triple of q is in exactly one of the qj ,
– each qj contains at least one triple,
– Ð→xj is the set of variables appearing in qj (Ð→xj may contain variables not in Ð→x ).

The set of query partitions of q[Ð→x ] over {Gi}i∈I is QPart(q[Ð→x ],{Gi}i∈I).

Hence a partition does not necessary use all the graphs, but it must cover the whole query.
The sets of partitions of a query may be very large: the number of possible J is exponential in ∣I ∣, the set

of possible distribution of the triples of q is also exponential in the size of q. In the worst case, all data sources
can answer the query. However, in practical cases it is possible that only a few partitions are applicable.
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Figure 4.3. Simple distributed query evaluation modulo ontology. The query q is evaluated against graph G1 ∪ O1 and
G2 ∪ S ∪O2 respectively returning the maps σ1 to σ6.

Figure 4.4 provides an example of how to evaluate relevant subqueries that are compatible and thus may be
used to return a single answer. In this case the partition is made of the queries q1 and q2.

Consider the query q of Listing 4.9:
SELECT ?y , ?z
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type o2 : Ensemble .
?z r d f : type o4 : MusicPiece .
?y f o a f : member ?x .
?z dc : c rea to r ?x .

}

Listing 4.9. Query q to be partitioned.

expressed in Figure 4.4. If this query is dispatched as such to each data source as in the previous example, it
would return no answer (there are no o2:Ensemble in O4 ∪ G4, nor any o4:MusicPiece in O2 ∪ S ∪ G2). It is



4.5 Query evaluation in networks of ontologies 47

however possible to partition it into two subqueries that can be understood by different data sources. Indeed:
q1 q2

SELECT ?x , ?y
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type o2 : Ensemble .
?y f o a f : member ?x .

}

Listing 4.10. Subquery q1.

SELECT ?x , ?z
WHERE {

?x r d f : type f o a f : Person .
?z r d f : type o4 : MusicPiece .
?z dc : c rea to r ?x .

}

Listing 4.11. Subquery q2.

are two subqueries that can be dispatched to O1 ∪ G1 and O2 ∪ S ∪ G2 (for q1) and O4 ∪ G4

(for q2). On the one hand, AO(q1[?x, ?y],O1 ∪ G1) ∪ AO(q1[?x, ?y],O2 ∪ S ∪ G2) will return the
same set of answers as the example of Figure 4.3. On the other hand, AO(q[?x, ?z],O4 ∪ G4) =
{⟨d2:g4, d4:t3⟩, ⟨d2:g1, d4:t1⟩, ⟨d2:g6, d4:t4⟩, ⟨d2:g3, d4:t2⟩}.

The results ofAO(q[?y, ?z],{O1∪G1,O2∪S∪G2,O3∪G3,O4∪G4}) will be π?y,?z(AO(q1[?x, ?y],O1∪
G1)∪AO(q1[?x, ?y],O2∪S∪G2)&AO(q[?x, ?z],O4∪G4)), i.e. {⟨d2:b1, d4:t1⟩, ⟨d2:b1, d4:t2⟩, ⟨d2:b2, d4:t2⟩}.

It is now possible to answer queries in a distributed way:

Definition 4.12 (Distributed answers to a SELECT query modulo ontology). Let q[Ð→x ] be a conjunctive
query and {Gi}i∈I a set of RDF graphs, then the set of answers to this query is

AO(q[Ð→x ],{Gi}i∈I) = ⋃
{⟨qj[

Ð→x j],Gj⟩}j∈J∈QPart(q[Ð→x ],{Gi}i∈I)

{σ∣Ð→x ∣ σ ∈ &j∈JAO(qj[Ð→xj],Gj)}.

The natural join (&) is used to ensure that each variable has the same value in each combined answer.
This is a generalisation of the previous case.

SPARQL 1.1 [HARRIS and SEABORNE 2013] also introduced the opportunity to combine queries and
sources. In particular, queries can integrate subqueries, evaluate a query part againts a specific named graph
(with the FROM NAMED and GRAPH constructs), and evaluate federated queries, i.e. queries against several
data sources whose results are combined (with the SERVICE construct). In this case, the partition has to be
provided by the query designer.

4.5 Query evaluation in networks of ontologies

As we have seen in Section 3.2, the data sources available may not be expressed with the same vocabulary,
defined in the same ontology. This is an obstacle to distributed querying. However, ontologies related through
alignments may offer the opportunity to translate queries from an ontology to another. In other words, align-
ments may be used as mediators between heterogeneous data sources. This is illustrated by Figure 4.5.

Networks of ontologies allow for connecting ontologies together in a meaningful way. Hence, they can help
interpreting information from one ontology into another ontology.

This means that queries will be evaluated by using the alignments between the ontologies associated to the
graphs. This leads to a different partition of a query.

Definition 4.13 (Query partition modulo alignments). Given a query q[Ð→x ] over an ontology O, a set of
graphs {Gi}i∈I expressed in ontologies {Oi}i∈I , and a set of alignments {Ai}i∈I between O and {Oi}i∈I , a
partition of the query q[Ð→x ] is a set of pairs {⟨qj[Ð→x j],Gj⟩}j∈J such that

– J ⊆ I ,
– q′j ⊆ q is a subgraph of q using only the vocabulary in the domain of Aj;
– qj = Aj(q′j) is the transformation of q′j according to alignment Aj .
– each triple of q is in exactly one of the q′j ,
– each qj contains at least one triple,
– Ð→xj is the set of variables appearing in qj (Ð→xj may contain variables not in Ð→x ).

The set of query partitions of q[Ð→x ] over {Gi}i∈I modulo alignments {Ai}i∈I is
QPart(q[Ð→x ],{Gi}i∈I ,{Ai}i∈I).
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Figure 4.4. Distributed query modulo ontology. Only some parts of the query q are evaluated against graphs G2 and G4.
The corresponding sets of answers are joined to provide an answer with respect to the initial query.

A particular alignment may be the identity alignment in case two sources use the same ontology.
Here we need a specific join operator which works with equalities as well as linked IRIs. Indeed, the natural

join (&) considered in Definition 4.12 can be defined as:

A(q[Ð→x ]) &A(q′[
Ð→
x′]) = {σ∣Ð→x ∩Ð→x′ ∪ σ∣Ð→x ∖Ð→x′ ∪ σ

′∣Ð→
x′∖Ð→x

∣ ⟨σ,σ′⟩ ∈ A(q[Ð→x ]) ×A(q′[
Ð→
x′]) ∧ σ∣Ð→x ∩Ð→x′ = σ

′∣Ð→x ∩Ð→x′}

as answers are variable assignments. If the data sources use different vocabulary, it is likely that individuals
returned as answers are identified by different IRIs. This would prevent the join to occur. The alignments may
be used in order to express that different IRIs denote the same individual through sameAs correspondences (=).
In order to take advantage of these in the join, one has to consider a set of alignments Λ. The set of sameAs
correspondences that it entails (Λ ⊧∆ ⟨o,=, o′⟩) forms an equivalence relation. The new join is expressed as:
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Query

O

Query′
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Answer′

Figure 4.5. Query mediation (from [EUZENAT and SHVAIKO 2013]). From two matched ontologies O and O′, resulting
in alignment A, a mediator is generated. This allows the transformation of queries expressed with the entities of the first
ontology into a query using the corresponding entities of a matched ontology and the translation back of the results from
the second ontology to the first one.

A(q[Ð→x ]) &Λ A(q′[
Ð→
x′]) = {σ∣Ð→x ∩Ð→x′ ∪ σ∣Ð→x ∖Ð→x′ ∪ σ

′∣Ð→
x′∖Ð→x

∣ ⟨σ,σ′⟩ ∈ A(q[Ð→x ]) ×A(q′[
Ð→
x′])

∧ ∀v ∈Ð→x ∩
Ð→
x′ , Λ ⊧∆ ⟨σ(v),=, σ′(v)⟩}

noting that Λ will always satisfy ⟨o,=, o⟩ due to the semantics of alignments (Definition 3.4).
Then it is possible to answer the query as:

Definition 4.14 (Distributed answers to a SELECT query in a network of ontologies). Let q[Ð→x ] be a
conjunctive query expressing in an ontologyO, {Gi}i∈I be RDF graphs expressed in their respective ontologies
{Oi}i∈I , {Ai}i∈I be ontology alignments between O and {Oi}i∈I , then the set of answers to this query is

AO(q[Ð→x ],{Gi}i∈I ,{Ai}i∈I) = ⋃
{⟨qj[

Ð→x j],Gj⟩}j∈J∈QPart(q[Ð→x ],{Gi}i∈I ,{Ai}i∈I)

{σ∣Ð→x ∣ σ ∈ &
{Ai}i∈I
j∈J AO(qj[Ð→xj],Gj)}.

This is a further generalisation of the previous case.
How does this relate to:

AΩ,Λ(q[Ð→x ],{Gi}i∈I) = {σ∣Ð→x ∣ ⟨Ω,Λ⟩ ⊧∆ σ(q)}?

In the previous examples (Listing 4.8 and 4.9) it was possibe to evaluate the queries because the graphs
were sharing common fragments of ontologies, namely FOAF and Dublin core. This is not always the case, like
different people may understand different languages, data sources may be expressed in different ontologies. As
discussed in Section 3.2, this can be supplemented by alignments within networks of ontologies. Consider the
query q of Listing 4.12:

SELECT ?x , ?y
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type o1 : Band .
?z r d f : type o1 : Work .
?y mo: member ?x .
?z mo: composer ?x .

}

Listing 4.12. Query q to be partitioned through alignments.

expressed in Figure 4.6. If this query is dispatched as such to each data source as in for Listing 4.8 against
several data sources (§4.4), it would return no answer (there are no o1:Band nor o1:Work in any of O4 ∪G4 or
O2 ∪G2). Consider two alignments (A1,2 and A1,4):

A1,2 = {⟨o1:Band,≥, o2:Ensemble⟩} A1,4 = {⟨o1:Work,≥, o4:MusicPiece⟩}
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and an alignment A2,4 = {⟨d2:b3,=, d4:b3⟩}, which may be called a link set, it is possible to partition q into
two subqueries that can be translated with the alignments and understood by the different data sources. Indeed:
SELECT ?x , ?y
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type o1 : Band .
?y f o a f : member ?x .

}

Listing 4.13. Subquery q2.

SELECT ?x , ?z
WHERE {

?x r d f : type f o a f : Person .
?z r d f : type o1 : Work .
?z dc : c rea to r ?x .

}

Listing 4.14. Subquery q4.

may be translated as:

SELECT ?x , ?y
WHERE {

?x r d f : type f o a f : Person .
?y r d f : type o2 : Ensemble .
?y f o a f : member ?x .

}

Listing 4.15. Translated subquery A1,2(q2).

SELECT ?x , ?z
WHERE {

?x r d f : type f o a f : Person .
?z r d f : type o4 : MusicPiece .
?z dc : c rea to r ?x .

}

Listing 4.16. Translated subquery A1,4(q4).

The translated subqueries can be dispatched to O2 ∪G2 (for A1,2(q2)) and O4 ∪G4 (for A1,4(q4)). On the
one hand, AO(A1,2(q2)[?x, ?y],O2 ∪G2) will return only two answers {⟨d2:g2, d2:b2⟩, ⟨d2:g3, d2:b2⟩}. On the
other hand,AO(A1,4(q4)[?x, ?z],O4∪G4) will return the same set of answers as Listing 4.9 evaluated against
several data sources (§4.4), i.e. {⟨d4:g4, d4:t3⟩, ⟨d4:g1, d4:t1⟩, ⟨d4:g6, d4:t4⟩, ⟨d4:g3, d4:t2⟩}.

The results ofAO(q[?y, ?z],{O2∪G2,O4∪G4},{A1,2,A1,4}) will be π?y,?z(AO(A1,2(q2)[?x, ?y],O2∪
G2) & AO(A1,4(q4)[?x, ?z],O4 ∪ G4)) = {⟨d2:g3, d4:t2⟩} (or, equivalently with respect to A2,4,
{⟨d4:g3, d4:t2⟩}).

4.6 Computation

Implementing distributed query evaluation is a difficult task with many issues to solve. It may be implemented
by importing all data into a single warehouse (materialisation) or, closer to the semantics, by rewriting queries.

What has been presented here is again only the semantics. The way alignments are used may be considered
as local-as-view (LAV) as soon as the query classes or properties are mapped through ≤. However, the query
partitioning schemes makes it global-as-view (GAV) automatically as they map full queries to these single
classes and properties.

However, the answer provided by a network of ontologies is a view from above: everything is known about
the data and knowledge of everyone. This may not be the case in practice.

A distributed approach, one the other hand, may be less complete, but provides correct answers based on
available information. Technically, distributed approaches may seem more complex and in particular, the num-
ber of possible partitions is daunting. This is the reason why, distributed query evaluators are far more complex
to implement: they will not explore the partition set entirely but use traversal strategies for that purpose, they
will not evaluate each partitions but select the most promising, they will not evaluate queries independently
but instead build query plans, based on cost models, aiming at balancing performances and completeness. This
would involve identifying sources, selecting sources (a priori or at evaluation time), partitioning queries, and
scheduling and monitoring evaluation.

Note that we have only presented here a very simple fragment of SPARQL based on conjunctive queries.
In practice, queries may have operators (disjunctions, outer join) that make them more elaborate. However, this
also provides a more flexible query algebra that can be used to rewrite queries in the system. This is because
the query optimiser is ‘knowledgeable’ of the SPARQL semantics, e.g. through query subsumption, that it can
manipulate queries so that it evaluates more efficient queries that will return correct results.

Another issue, already mentioned, is the consistency of the network of ontologies. In case of inconsistency,
any answers is correct with respect to the semantics. To achieve this result, it is not worth evaluating queries.
A consistent subnetwork, may provide interesting answers...
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Figure 4.6. Query evaluation in a network of ontologies. The query q and the two graphs G2 and G4 do not use the
same ontologies but alignments (A1,2 and A1,4) can translate the query vocabulary in that of the graphs. The individual
correspondence in A2,4 matches d4:g3 and d2:g3.

Conclusion

We provided a language for expressing queries (q[Ð→x ]) and different semantics for queries specifying their
answers (A(q[Ð→x ],G)), modulo ontologies (AO(q[Ð→x ],G)) and in a distributed (AO(q[Ð→x ],{Gi}i∈I ) and het-
erogeneous context (AΩ,Λ(q[Ð→x ],{Gi}i∈I ). This allows to retrieve information, not simply in a single data
set, but by taking advantage of data and knowledge distributed in different heterogeneous sources. The query
semantics do not bring new semantics: they use the defined semantics for graphs, ontologies, alignments and
networks of ontologies.

In the end, it can be argued that:
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A(q[Ð→x ],G)
⊆ AO(q[Ð→x ],G)
⊆ AO

∪ (q[Ð→x ],{Gi}i∈I) if G ∈ {Gi}i∈I
⊆ AO(q[Ð→x ],{Gi}i∈I)
⊆ AO(q[Ð→x ],{Gi}i∈I ,{Ai}i∈I)
⊆ AΩ,Λ(q[Ð→x ],{Gi}i∈I)

Said otherwise, the more information (ontologies, sources, alignments, networks) is exploited, the more an-
swers are given to queries or the more complete this set of answers is with respect to those given by a network
of ontologies.

Quiz
– For what is it useful to query different sources?
– What should be the answer to a query if the graph to which it is applied is inconsistent? Why?
– Could a query be inconsistent? If it is possible, can it have answers?
– Should querying with respect to an ontology return more answers than without it? Why?
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IN WHICH WE FACE INCONSISTENCY, OR THE ABSENCE OF MODEL — IT SPREADS TO THE WHOLE NET-
WORK OF ONTOLOGIES AND CONTAMINATES QUERY RESULTS — ISOLATING MAXIMAL CONSISTENT SUB-
NETWORKS AND REPAIRING INCONSISTENCY REVEAL QUITE CHALLENGING — THE FRAMEWORK OF BE-
LIEF REVISION DEALS WITH INCONSISTENCY IN A PRINCIPLED WAY — WE EXTEND IT TO NETWORKS OF

ONTOLOGIES.

Knowledge acquired from other agents or from the environment may contradict an agent’s beliefs. It may
also happen that the environment changes and that the knowledge in an ontology is not up-to-date. When
ontologies are connected in a network of ontologies, the addition of a new information in one ontology or the
addition of a correspondence in an alignment may have long-range consequences.

One of these consequences is that the network of ontology satisfies no model: it is inconsistent. A consistent
agent cannot hold inconsistent beliefs. Then it will address this problem by revising its beliefs according to the
new information. In doing so, it will try to preserve as much as possible non contradicting beliefs, yet restoring
consistency.

5.1 Inconsistency, isolation, repair

As we have seen (Appendix A), an ontology may be inconsistent, i.e. have no model. This means that it cannot
be the representation of anything. Networks of ontologies may also be inconsistent, either because one of their
ontologies is inconsistent or because they are not compatible through the alignments.

Because inconsistent knowledge has no model, any formula is a consequence of it and any answer is good
for a query. Therefore, inconsistency hinders the capability to use knowledge.

owl:Thing

o1:Person o1:Device

o2:Musician

o2:Singer

O2

o3:Device

o3:MusicInstrument

o3:Voice

�

O3

≥

≤

≤

Figure 5.1. Two ontologies and one alignment which are together incoherent (o2:Singer cannot have an instance) but
independently coherent.

One way of reacting to inconsistency is to try to repair the affected ontology and alignment. This may be
achieved by suppressing some elements. In a network of ontologies, it may be achieved by retracting incon-
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sistent ontologies or alignments. This would lead to adopt a maximal consistent subnetwork of a particular
network of ontology. However, this leads to two problems: (a) the retraction may lead to miss many consistent
knowledge, and (b) there may be several such sub-network.

A more precise approach would be to identify and retract faulty axioms in ontologies and faulty correspon-
dences in alignments. However, this raises the same problems.

This may be illustrated by Figure 5.1. In this pair of aligned ontology fragments, the class o2:Singer is
incoherent: it is necessarily empty. It would be inconsistent if there were an instance of o2:Singer.

However, each ontology taken in isolation is coherent. This is also true of the alignment if no constraints
on the ontologies is known. There are several ways to fix this incoherence. One can modify the alignment (sup-
pressing ⟨o1:Device,≥, o3:Device⟩ or ⟨o2:Singer,≤, o3:Voice⟩) or the ontologies (o1:Person�o1:Device, o2:Musician ⊑
o1:Person or o2:Singer ⊑ o2:Musician from the left-hand side ontology or o3:MusicInstrument ⊑ o3:Device or
o3:Voice ⊑ o3:MusicInstrument from the right-hand side ontology).

Any of these would restore coherence. However, without further feedback, it is not easy to decide which of
these solutions to select. Moreover, it may be sometimes necessary to combine the retraction of several state-
ments. A cautious approach would consist of retracting all these statements, clearly weakening the knowledge.

In addition, depending on the retracted statements some information that is not contradictory may be lost.
For instance, if one decides that the problem should be solved by suppressing the assertion o3:MusicInstrument ⊑
o3:Device, then it will apply to all those music instruments which are not voices, such as haegum, the information
that they are music instruments, which does not raise any problem, is not entailed any more. Hence, a minimal
correction of the problem, should also add more statements in order to preserve that information.

Consequently, restoring consistency is a complex task, subject to antagonist constraints. It is better ad-
dressed in a principled way as belief revision does.

5.2 Belief revision

The field of belief revision has considered the kind of problems that we face in a logical context1. It has
proceeded by defining revision operators, constraints that they must satisfy (named postulates) and the design
of such operators. We consider the basis of this field here.

5.2.1 Revision operators

Revision [ALCHOURRÓN, GÄRDENFORS, and MAKINSON 1985] considers a propositional logical language
L and a closure operation2 Th ∶ 2L → 2L over sets of formulas in this language. A closed set of formulas is
called a ‘belief set’. The classical revision framework deals with belief sets syntactically, i.e. it considers them
as closed sets of formulas, without explicit semantic assumption on the closure operation.

The use of closed sets has the advantage of providing principles which address minimality from the begin-
ning: a closed set contains all the information to be preserved. Thus the goal of revision is simply to reduce the
belief set so that it does not contain undesirable knowledge.

Revision is based on operators for modifying a belief set (K) when some action has to occur with respect
to a formula (ϕ):
revision when ϕ has to be believed (+̇),
contraction when ϕ has to be not believed (−̇), or
update when ϕ does not hold any more (×̇).
These operators are constrained by postulates.

Besides ‘belief revision’ stricto sensu, i.e. theory revision, there exists the notion of ‘base revision’ [KAT-
SUNO and MENDELZON 1991b] which operates on sets of axioms not necessarily closed. These have been
recently convincingly unified in [FALAKH, RUDOLPH, and SAUERWALD 2023].

1 ‘Belief revision’ is used here as a generic term which will cover what we call theory revision and base revision.
2 The original formulation uses Cn instead of Th. We use Th in order to distinguish it with the semantically defined

consequence relation Cn and to emphasize that it is not a semantic operation.
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5.2.2 AGM postulates for belief revision

We follow the 6 basic AGM postulates for revision [ALCHOURRÓN, GÄRDENFORS, and MAKINSON 1985]
with, in parenthesis, the labels of the classification of Sven Ove Hansson [HANSSON 1996; FERMÉ and HANS-
SON 2018].

Here, K + ϕ is used to denote Th(K ∪ {ϕ}) (a new belief set).

Definition 5.1 (Standard AGM revision postulates). Given a belief setK ⊆ L and a formula ϕ ∈ L, the belief
set K+̇ϕ resulting from revising K with ϕ must satisfy the following postulates:
+̇1 (closure) K+̇ϕ ⊇ Th(K+̇ϕ), i.e. the result is deductively closed;

+̇2 (success) ϕ ∈K+̇ϕ, i.e. the new formula should be believed;

+̇3 (inclusion) K+̇ϕ ⊆K +ϕ, i.e. it should not provide more knowledge than the mere addition of the formula;

+̇4 (vacuity) If ¬ϕ /∈ Th(K) then K+̇ϕ ⊇ K + ϕ, i.e. if the formula is compatible with current beliefs, then
simply add it;

+̇5 (consistency) if ¬ϕ /∈ Th(∅), then K+̇ϕ is consistent, i.e. revision should not bring inconsistency;

+̇6 (extensionality) If ϕ ≡ ψ, then K+̇ϕ ≡K+̇ψ, i.e. revision should be syntax-independent.

+̇5 mentions consistency, but this could be replaced by ϕ ∧ ¬ϕ /∈K+̇ϕ.
In addition to these six basic postulates, the AGM framework comprises two supplementary postulates

which are dependent on the logical language used: they express the relation between revision and conjunction.
They can be expressed in this way:

Definition 5.2 (Additional AGM revision postulates).
+̇7 (superexpansion) K+̇(ϕ ∧ ψ) ⊆ (K+̇ϕ) + ψ;
+̇8 (subexpansion) if ¬ψ /∈K+̇ϕ, then K+̇(ϕ ∧ ψ) ⊇ (K+̇ϕ) + ψ.

Since we are relying on ontology languages which may not have explicit conjunction, the basic postulates will
mainly be considered.

This framework has been criticised and improved by other authors, and many other operators have been
proposed in different contexts [GÄRDENFORS 1992]. However, the original idea has remained because its
simple definition of a few independent postulates is very appealing.

5.2.3 Contraction, update and base revision

The contraction operator (K−̇ϕ, i.e. what happens when removing an assertion if one wants to ensure that it
is not deducible anymore) is also considered. Contraction axioms corresponding to revision axioms can be
specified:

Definition 5.3 (AGM contraction postulates).
−̇1 (closure) K−̇ϕ ⊇ Th(K−̇ϕ), i.e. the result is deductively closed;

−̇2 (success) if ϕ /∈ Th(∅), then ϕ /∈K−̇ϕ, i.e. unless a tautology, the retracted formula should not be believed;

−̇3 (inclusion) K−̇ϕ ⊆K, i.e. it should not provide more knowledge than the initial theory;

−̇4 (vacuity) If ϕ /∈ K then K−̇ϕ ⊇ K, i.e. if the formula is not entailed by current beliefs, then they do not
change;

−̇5 (recovery) K ⊆ (K−̇ϕ) + ϕ, i.e. contraction should not suppress more than can be recovered;

−̇6 (extensionality) If Th(ϕ) = Th(ψ), then K−̇ϕ =K−̇ψ, i.e. contraction should be syntax-independent.

It has been shown that revision and contraction are inter-definable through the Lévi identity:

K+̇ϕ = (K−̇¬ϕ) + ϕ

and its converse, the Harper identity:

K−̇ϕ = Th(K ∩ (K+̇¬ϕ))
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The same kind of framework has been introduced for defining an update operator (K×̇ϕ) [KATSUNO and
MENDELZON 1991a]. Revision and update can be contrasted by the following: revision operators change be-
liefs when knowledge about the domain has changed; update operators change beliefs when the modelled
domain has changed.

Definition 5.4 (Update). update (theory -)—emph Update can be defined by the same postulates as revision,
but (+̇4) which has to be changed for:
×̇4 If ϕ ∈K, then K×̇ϕ =K, i.e. if the formula is already believed, then there is nothing to update;

Update has some differences with revision. For instance, the update will not restore the consistency of an
already inconsistent theory. Another difference between revision and update is that we can expect revision to
not depend on the order of revision, i.e. it commutes (K+̇ϕ+̇ψ =K+̇ψ+̇ϕ), while updateupdate (theory -) does
not necessarily have to be order-independent.

We focus on belief revision because, in the context of open systems, the main problem is to accumulate
knowledge rather than contract it. Such operators still have their utility and could certainly be developed along
the methodology presented here. We do not discuss these extensions further, instead we consider applying the
most standard theory to networks of ontologies.

Related principles have been proposed to account for belief base revision [NEBEL 1994] which, contrary to
theory revision, does not apply to closed sets of formulas but sets of axioms. Table 5.1 provide an idea of the
differences between the two approaches.

theory revision base revision
size large small
entailment membership (∈) entailment test (⊧)
equivalence equality (=) mutual entailment (≡)
consistency inclusion of inconsistent statement consistency test

Th(⋅) = L M(⋅) = ∅

natural operator partial-meet faithful ordered

Table 5.1. The differences between theory revision and base revision.

Base revision has the advantage of being more practical (because users and systems do not manipulate
closures). However, it takes the risk to depend on syntax. Indeed, different sets of axioms may have the same
closure, i.e. the same meaning, and it is preferable that the revision has the same effect on both. Since bases are
not closed, it is also less convenient to compare them on the basis of inclusion: two equivalent bases may not
be included in one another.

Hence, it is more convenient to define base revision semantically: using entailment instead of inclusion.
This is what has been done:

Definition 5.5 (KM postulates for base revision [KATSUNO and MENDELZON 1991b]). Given K ⊆ L a
set of assertions and ϕ ∈ L a formula, the set of assertions K+̄ϕ resulting from revising K with a new belief ϕ
must satisfy the postulates:
+̄1 (success) K+̄ϕ ⊧ ϕ;

+̄2 (vacuity) if K ∪ {ϕ} is consistent, then K+̄ϕ ≡K ∪ {ϕ};
+̄3 (consistency) if ϕ is consistent, then K+̄ϕ is consistent;

+̄4 (extensionality) if K ≡K ′ and ϕ ≡ ψ then K+̄ϕ ≡K ′+̄ψ;

+̄5 (superexpansion) (K+̄ϕ) ∪ {ψ} ⊧K+̄(ϕ ∧ ψ);
+̄6 (subexpansion) if (K+̄ϕ) ∪ {ψ} is consistent, then K+̄(ϕ ∧ ψ) ⊧ (K+̄ϕ) ∪ {ψ}.

Here, the use of ∪ replaces that of +, because closure is not required (the authors did not use ∪ for another
technical reason). Closure is not needed any more because belief bases are not closed and inclusion, which
aimed at confining the revision within the closure, is avoided: indeed, it may be necessary to add axioms which
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were previously entailed but were not included in the base. On the contrary, extensionality did not had to be
asserted for theories because two theories are equivalent if they are equal (their closure is the same), though
this does not hold for bases.

These postulates characterise semantically operators equivalent to theory revision.

Proposition 5.6 ([KATSUNO and MENDELZON 1991b]). +̄ is a base revision satisfying +̄1–+̄4 iff the theory
revision operator defined as Cn(K+̄ϕ) satisfies +̇1–+̇6. +̄5–+̄6 are then equivalent to +̇7–+̇8.

The authors also show that for propositional logics with a finite signature, base revision operators are exactly
those which return the minimal models of ϕ for a K-induced faithful preorder over models.

Hereafter, we consider theory revision instead of base revision. However, while the reasoning applies to
closed sets, examples are always provided on bases (because closed sets would be too large).

5.2.4 Partial-meet revision

Intuitively, for applying revision, it is necessary to suppress from the closure assertions that (a) conflict with the
new assertion, (b) cannot be deduced any more, (c) so that adding the new assertion to the result is consistent.
Partial-meet revision [ALCHOURRÓN, GÄRDENFORS, and MAKINSON 1985] is a very general form of revision
operator. It is based on the maximal subsets of K which remain consistent when adding ϕ (denoted by K⊺ϕ):

K⊺ϕ = {K ′ ⊆K ∣ ¬ϕ /∈ Th(K ′) and ∀K ′′;K ′ ⊂K ′′ ⊆K,¬ϕ ∈ Th(K ′′)}
Different operators may be obtained by selecting γ some of these subsets and intersecting them. Partial-

meet revision is defined by:

K+̇ϕ =⋂γ(K⊺ϕ) + ϕ
such that if K⊺ϕ ≠ ∅, then γ(K⊺ϕ) ≠ ∅.

When γ selects all sets in K⊺ϕ, then the operator is called full-meet revision and when it selects only one
such set, it is the maxichoice revision.

Partial-meet revision satisfy all basic postulates.

Proposition 5.7 (Satisfaction [ALCHOURRÓN, GÄRDENFORS, and MAKINSON 1985]). Partial-meet revi-
sion operators satisfy postulates +̇1–+̇6.

Partial-meet revision operators are among the most natural such operators.

5.3 Adaptation to ontologies and alignments

Revision operators have to be adapted to their use in networks of ontologies. Although it seems that they can
be used right away with ontologies, some issues have to be considered before this can be possible (§5.3.1).
Dealing with them allows for designing ontology revision operators (§5.3.2). This enable revising alignments
and introduce corresponding partial-meet revision operators (§5.3.3).

5.3.1 Problems for the application to description logics

Several problems may be raised to adopt the revision framework for ontologies and alignments [FLOURIS,
PLEXOUSAKIS, and ANTONIOU 2006]:
– they do not have a negation of a formula, which renders the Levi and Harper identities non applicable;
– they do not have a negation of a formula, which makes the classical formulation of +̇4, +̇5 and +̇8 non

expressible;
– they do not have the conjunction of formulas, which prevents to express +̇7 and +̇8 (and +̄5 and +̄6 for base

revision).
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In fact, the revision postulates mix a set notation (∪ often hidden in +) and a logic notation (∧). This had
been simplified in [KATSUNO and MENDELZON 1991b] through always using ∧: a base would be expressed
as a conjunction of the formulas in the base. Hence, the base becomes a formula and it is possible to revise by
a set of formulas by making it a conjunction. Semantically, the meaning is the same.

However, for languages without formula conjunction, like ontology and alignment languages, this may be
difficult. It is possible to proceed in the opposite way and to express conjunction with sets of formulas. In
principle, the same level of generality can be obtained by allowing the revision by a set of formula instead
of one single formula [FALAKH, RUDOLPH, and SAUERWALD 2023]. Here, we will systematically use sets
instead of conjunction, which aligns well with decomposing everything in sets of triples or correspondences,
but revise by a single formula at a time.

AGM uses a closure operation which is a purely syntactic operator (Th), but it is possible to consider
it semantically (Cn) [DALAL 1988]. If this closure is tied to semantics by completeness (Th ≡ Cn), then
postulates can be reformulated in model-theoretic terms. This addresses some of the issues raised by the absence
of negation: the use of negation in +̇4, +̇5 and +̇8 are expression of consistency which are better expressed in
these terms. This does not, however, solve the problem with the Levi and Harper identities.

Moreover, in this course, we are attached to define the semantics of presented concepts. Hence, we take
a semantic point of view and deal with semantic consequence when expressing postulates for ontologies and
alignments.

5.3.2 Operators for description logic ontologies

To introduce semantic revision postulates, the following changes are made:
– the syntactic closure function (Th) is replaced by the semantic one (Cnω);
– consistency/inconsistency is expressed as the existence/absence of models;
– consistency is used instead of ¬.

This results in the following definition as reformulated by Bernhard Nebel [NEBEL 1994].

Definition 5.8 (Semantic revision postulates for ontologies). Given a closed ontology O and an ontology
axiom δ, the ontology O+̇δ resulting from revising O with δ must satisfy the following postulates:
+̇1 (closure) O+̇δ ⊇ Cnω(O+̇δ);
+̇2 (success) δ ∈ O+̇δ;

+̇3 (inclusion) O+̇δ ⊆ O + δ;

+̇4 (vacuity) If O + δ is consistent, then O+̇δ ⊇ O + δ;

+̇5 (consistency) If O+̇δ is inconsistent, then δ is inconsistent;

+̇6 (extensionality) If δ ≡ δ′, then O+̇δ ≡ O+̇δ′.

Similarly, for partial-meet revision, ⊺ may be rewritten semantically without negation as:

O⊺δ = {O′ ⊆ O ∣M(O′ + δ) ≠ ∅ and ∀O′′;O′ ⊂ O′′ ⊆ O,M(O′′ + δ) = ∅}

5.3.3 Alignment revision

As agents interact, they may have to expand the alignments between their ontologies. Like there are revision
operators for ontologies, it is possible to consider an alignment revision operator whose goal is to add a new
correspondence to an alignment.

We have not seen that alignments may become inconsistent independently from the ontologies they relate.
For an alignment to be inconsistent it is necessary that there is no model for this alignment. This may be the case
in the situation described by Figure 5.2: the alignment between O and O′ asserts that the same (=) individual,
denoted by different IRIs (o and o′) belongs (∈) to two disjoint (�) classes (c and c′). Independently from any
constraint on the ontologies, this cannot have a model. More realistically, inconsistency may be raised when
using more elaborate alignment languages.

Here are the corresponding postulates (as before, A + µ denotes Cnα(A ∪ {µ})):
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o2:Singer o3:Voice

d2:Nina d3:NS472

�

=

∋∈

Figure 5.2. Locally inconsistent alignment: an inconsistent alignment that can only be made consistent by modifying it.

Definition 5.9 (Semantic revision postulates for alignments). Given a closed alignment A and a correspon-
dence µ, the alignment A⊕̇µ resulting from revising A with µ must satisfy the following postulates:
⊕̇1 (closure) A⊕̇µ ⊇ Cnα(A⊕̇µ)
⊕̇2 (success) µ ∈ A⊕̇µ, i.e. A⊕̇µ ⊧ µ
⊕̇3 (inclusion) A⊕̇µ ⊆ A + µ
⊕̇4 (vacuity) If A + µ consistent, then A⊕̇µ ⊇ A + µ;

⊕̇5 (consistency) If A⊕̇µ inconsistent, then µ is inconsistent

⊕̇6 (extensionality) If µ ≡ ν then A⊕̇µ ≡ A⊕̇ν

Such a revision operator is local in two senses: it is constrained only by the alignment and the two ontolo-
gies, and it only modifies the alignment.

All ingredients for defining partial-meet revision on alignments are readily available: (a) alignments can be
considered as closed by the Cnα function; (b) models for alignments have been defined (§3.1.2); (c) inclusion
for defining ⊺ is simply set inclusion.

Hence, a partial-meet revision operator on alignments can be defined as:

A⊕̇µ =⋂γ(A⊺µ) + µ

such that
A⊺µ = {A′ ⊆ A ∣M(A′ + µ) ≠ ∅ and ∀A′′;A′ ⊂ A′′ ⊆ A,M(A′′ + µ) = ∅}

Proposition 5.10 ([EUZENAT 2015]). Partial-meet revision operators on alignments satisfy the six basic pos-
tulates for alignment revision ⊕̇1–⊕̇6.

The question that we consider is: can AGM revision postulates be applied to networks of ontologies?

5.4 Revision operators for networks of ontologies

We now can deal with revision operators for networks of ontologies. We first introduce specific operators for
dealing with networks of ontologies (§5.4.1): they depend on the type of formula by which the network is
revised (ontology axiom or correspondence). We then provide postulates for revising networks of ontologies
depending on the type of formula used for revising: an ontology formula or a correspondence (§5.4.2). We then
consider the definition of global revision operators based on the regular ontology revision operators and this
alignment revision operator and provide their properties (§5.4.3). Although such an operator can be defined, it
would be too local (disallowing ontology revision by an alignment change or vice versa). Hence we introduce
a partial-meet revision operator for networks of ontologies that works globally (§5.4.4).

5.4.1 Network of ontology revision operators

Revision may be needed at two different occasions: (a) When adding a formula δ to an ontologyO, or (b) When
adding a correspondence µ to an alignment A. Revision of a network by adding ontologies and alignments can
also be considered. However, adding new ontologies does not bring new problems if they are consistent. Since
they are not yet connected to other ontologies, they will be considered as connected through empty alignments.
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We do not consider the operations of adding new ontologies or alignments, because it is always possible to
introduce empty ontologies and alignments, which do not create inconsistency and to add axioms and corre-
spondences with the corresponding operators. Then adding alignments will be like revising by modifying these
initially empty alignments.

Hence, we only have to consider two operators:

Definition 5.11 (Revision operators in a network of ontologies). Given a closed network of ontologies
⟨Ω,Λ⟩, two types of revision operators are distinguished:

– ⟨Ω,Λ⟩⊞̇δ/O: revising the ontology O by adding the formula δ;
– ⟨Ω,Λ⟩⊞̇µ/A: revising the alignment A by adding the correspondence µ;

with O ∈ Ω and A ∈ Λ.

Inconsistency may manifest itself in three ways (§3.3):
ω-local Because an ontology has no (local) model anymore (only with the first operation);
α-local Because an alignment is inconsistent in itself (§5.3.3);
global Because there is no model combination that satisfies all the alignments.
An operation can only trigger one kind of local inconsistency or global inconsistency.
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Figure 5.3. An inconsistent network of ontologies N2 made of three ontologies (O1, O2 ∪{d2:Nina <− o2:Singer}, and O3)
and three alignments (A1,2, A1,3, and A2,3). In red, the statements involved in the inconsistency.

In the following examples, we start with the inconsistent network of ontologies N2 of Figure 5.3. This may
be the result of different actions modifying a previous network:
0. ⟨{O1 ∪ {d2:Nina <− o1:Person},O2,O3},{A1,2,A1,3,A2,3}⟩⊞̇(d2:Nina <− o1:Band)/O1

This is an ontology revision that raises an ω-local inconsistency.
1. ⟨{O1,O2,O3},{A1,2,A1,3,A2,3}⟩⊞̇(d2:Nina <− o2:Singer)/O2

This is an ontology revision that raises a global inconsistency (illustrated in Figure 5.3).
2. ⟨{O1∖{o1:Person�o1:Device},O2∪{d2:Nina <− o1:Singer},O3},{A1,2,A1,3,A2,3}⟩⊞̇(o1:Person�o1:Device)/O1

This raises a global inconsistency but no local inconsistency as O1 alone is consistent.
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– Pure α-local inconsistency is more difficult to encounter due to the little expressiveness of alignments.
However, Figure 5.2 illustrates this situation: the ontologies contain no assertions (beside that there are
classes and individuals) and the alignment imposes constraints that can be satisfied by no pair of models.

3. ⟨{O1,O2,O3},{A1,2,A1,3}⟩⊞̇(o2:Singer ≤ o3:Voice)/A2,3

This is an alignment change that raises a global inconsistency.
Finally, revision can be achieved by two means:

– By retracting and adding axioms (⟨Ω ± δ′/O′, Λ⟩) for global and ω-local inconsistency;
– By retracting and adding correspondences (⟨Ω,Λ ± µ′/A′⟩) for global and α-local inconsistency.

We consider the addition of axioms and correspondences within revision, because in base revision, it may be
necessary to complete the base so that it looses as little information as possible. However, in theory revision,
addition is useless because theories are closed.

In the examples above, from the inconsistent network of ontologies N2 of Figure 5.3, consistency may be
recovered in various ways:
0. ⟨{O1 ∪ {d2:Nina <− o1:Person},O2,O3},{A1,2,A1,3,A2,3}⟩⊞̇(d2:Nina <− o1:Band)/O1

The ω-local inconsistency may be solved by removing o1:Person�o1:Band or d2:Nina <− o1:Person from O1,
but cannot be solved by removing anything from the other ontologies or alignments.

1. ⟨{O1,O2,O3},{A1,2,A1,3,A2,3}⟩⊞̇(d2:Nina <− o2:Singer)/O2

The global inconsistency may be solved locally by removing any statement of O2 marked in red in Fig-
ure 5.3: o2:Singer ⊑ o2:Musician (and its consequences) or o2:Musician ⊑ o2:Person (and its consequences),
but it can also be solved more globally, for instance, by removing o1:Person ≥ o2:Person from A1,2 (and its
consequences), o3:Singer ≤ o3:Voice from A2,3 (and its consequences) or even o1:Device ≥ o3:Device from
A1,3 (and its consequences), etc. In each case, the discarded consequences span beyond the local changes,
in general they would comprise d2:Nina <− o1:Person or d2:Nina <− o1:Device. If there were many o2:Singers, it
would be wiser to modify an ontology statement than each singer situation individually.

2. ⟨{O1∖{o1:Person�o1:Device},O2∪{d2:Nina <− o1:Singer},O3},{A1,2,A1,3,A2,3}⟩⊞̇(o1:Person�o1:Device)/O1

The global (and non local) inconsistency but no local inconsistency cannot be solved by modifying O1, but
by suppressing any of the other statements in red (and their consequences) also leading to suppress either
d2:Nina <− o1:Person or d2:Nina <− o1:Device.

– A pure α-local inconsistency such as the one in Figure 5.2 may be recovered by removing any of the four
initial correspondences and only in this way.

3. ⟨{O1,O2,O3},{A1,2,A1,3}⟩⊞̇(o2:Singer ≤ o3:Voice)/A2,3

The global inconsistency cannot be solved locally, as A2,3 was previously empty and thus consistent. This
can only be solved by suppressing any of the other statements in red (and their consequences).

Cases 2 and 3 have been chosen so that the global inconsistency cannot be solved locally, but it may happen
that global inconsistencies can be solved locally.

⟨Ω,Λ⟩

⊞̇δ/O

⊞̇µ/A

operator

ω-local

global

inconsistency

α-local

±δ′/O′

±µ′/A′

modification

Figure 5.4. Phenomena occurring when revising networks of ontologies.

A summary of the situation is presented in Figure 5.4: the two possible operators (ontology or alignment
revision) may entail three different types of inconsistency (two local and one global inconsistency). These three
types of inconsistency can be resolved by two types of modifications (in ontologies and/or alignments). Local
inconsistencies may only be raised by revision of the concerned ontology or alignment and only be solved
by applying changes to this ontology or alignment. Global inconsistency may be raised and solved by both
operations, independently.
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5.4.2 Revision postulates for networks of ontologies

Revision operators, both for alignments and ontologies, must be global, i.e. such that the closure operator in
the postulates is defined with respect to the whole network of ontologies. Networks of ontologies have already
been defined as a logic with a consequence closure (Cn).

However, we need a relation for comparing networks such as inclusion or subsumption. In the general case,
this may reveal difficult [EUZENAT 2014b]. However, when dealing with revision of networks of ontologies
we can consider networks with which there exist an isomorphism between the initial network and those it is
compared and combined with. To enforce compatibility between these isomorphisms, we will consider net-
works of ontologies with the same number of ontologies indexed by a finite set Ξ . These networks will also be
considered normalised, i.e. for each pair of ontologyO andO′ there exists exactly one alignment between them
called λ(O,O′), eventually empty. It is always possible to normalise networks of ontologies and the normal
form has the same set of models. In addition, for theory revision, these networks are closed. The set of such
networks will be called NΞ .

It is now possible to introduce subsumption between these networks. It is called syntactic subsumption,
because it assumes that the compared ontologies use the same vocabulary, hence use simple inclusion.

Definition 5.12 (Syntactic subsumption). ⟨Ω,Λ⟩ ∈ NΞ is (syntactically) subsumed by ⟨Ω′, Λ′⟩ ∈ NΞ (noted
⟨Ω,Λ⟩ ⊑ ⟨Ω′, Λ′⟩) if

– ∀i ∈ Ξ , Oi ⊆ O′i, and
– ∀i, j ∈ Ξ , λ(Oi,Oj) ⊆ λ′(O′i,O′j)

Similarly as before, two addition operations (note the lack of the dot on ⊞) introduce an axiom in an
ontology or a correspondence in an alignment:

⟨Ω,Λ⟩ ⊞ δ/O = Cn(⟨Ω ∖ {O} ∪ {O + δ}, Λ⟩)

and
⟨Ω,Λ⟩ ⊞ µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A + µ}⟩)

Naturally, ⟨Ω,Λ⟩, ⟨Ω,Λ⟩ ⊞ δ/O and ⟨Ω,Λ⟩ ⊞ µ/A belong to a same NΞ with the same index for ontologies
(and O having the remaining index). Thus, ⟨Ω,Λ⟩ ⊑ ⟨Ω,Λ⟩ ⊞ δ/O and ⟨Ω,Λ⟩ ⊑ ⟨Ω,Λ⟩ ⊞ µ/A

An operator ⊞̇, such that ⟨Ω,Λ⟩⊞̇µ/A is the result of the revision of ⟨Ω,Λ⟩ by a new correspondence µ in
the alignment A ∈ Λ, can be defined in the AGM postulate style:

Definition 5.13 (Semantic alignment revision postulates for networks of ontologies). Given a closed net-
work of ontologies ⟨Ω,Λ⟩, a closed alignment A ∈ Λ and a correspondence µ, the network of ontologies
⟨Ω,Λ⟩⊞̇µ/A resulting from the revision of A by µ must satisfy the following postulates:
⊞̇1 (closure) ⟨Ω,Λ⟩⊞̇µ/A ⊒ Cn(⟨Ω,Λ⟩⊞̇µ/A);

⊞̇2 (success) ⟨Ω,Λ⟩⊞̇µ/A ⊧ µ
⊞̇3 (inclusion) ⟨Ω,Λ⟩⊞̇µ/A ⊑ ⟨Ω,Λ⟩ ⊞ µ/A;

⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ µ/A consistent, then ⟨Ω,Λ⟩⊞̇µ/A ⊒ ⟨Ω,Λ⟩ ⊞ µ/A;

⊞̇5 (consistency) If ⟨Ω,Λ⟩⊞̇µ/A inconsistent, then µ is inconsistent;

⊞̇6 (extensionality) If µ ≡ ν, then ⟨Ω,Λ⟩⊞̇µ/A ≡ ⟨Ω,Λ⟩⊞̇ν/A;

The same can be defined for ontology revision.

Definition 5.14 (Semantic ontology revision postulates for networks of ontologies). Given a closed network
of ontologies ⟨Ω,Λ⟩, a closed ontologyO ∈ Ω and a formula δ, the network of ontologies ⟨Ω,Λ⟩⊞̇δ/O resulting
from the revision of O by δ must satisfy the following postulates:
⊞̇1 (closure) ⟨Ω,Λ⟩⊞̇δ/O ⊒ Cn(⟨Ω,Λ⟩⊞̇δ/O)
⊞̇2 (success) ⟨Ω,Λ⟩⊞̇δ/O ⊧ δ/O
⊞̇3 (inclusion) ⟨Ω,Λ⟩⊞̇δ/O ⊑ ⟨Ω,Λ⟩ ⊞ δ/O
⊞̇4 (vacuity) If ⟨Ω,Λ⟩ ⊞ δ/O consistent, then ⟨Ω,Λ⟩⊞̇δ/O ⊒ ⟨Ω,Λ⟩ ⊞ δ/O;
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⊞̇5 (consistency) If ⟨Ω,Λ⟩⊞̇δ/O inconsistent, then δ is inconsistent

⊞̇6 (extensionality) If δ ≡ ϵ, then ⟨Ω,Λ⟩⊞̇δ/O ≡ ⟨Ω,Λ⟩⊞̇ϵ/O

In both cases, the principles are the same as for the local postulates:
⊞̇1 (closure) The revised network is closed (this is theory revision);
⊞̇2 (success) The new axiom or correspondence is consequence of the network after revision;
⊞̇3 (inclusion) The consequences of the revision cannot extend beyond those of the addition;
⊞̇4 (vacuity) The revised network is equivalent to the closure of the one resulting from the addition, unless the

latter is inconsistent;
⊞̇5 (consistency) The only reason why the result of revision may be inconsistent, is because the new axiom or

correspondence is itself inconsistent;
⊞̇6 (extensionality) Revision is syntax-independent.

5.4.3 Local revision is not sufficient

A tempting approach to define revision operators for networks of ontologies would be to start from local
revision operators and apply them where (in the alignment or ontology in which) revision occurs. This would
have the benefit of defining revision operators for networks of ontologies only by composing local revision
operators. Indeed, one would like that:

⟨Ω,Λ⟩⊞̇δ/O = Cn(⟨Ω ∖ {O} ∪ {O+̇δ}, Λ⟩)

and, for alignment revision, that:

⟨Ω,Λ⟩⊞̇µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A⊕̇µ}⟩)

Network revision operators are generalisations of their local counterparts, in the sense that, if the network
of ontologies is reduced to one ontology or a pair of aligned ontologies, then the simple use of valid revision
operators on ontologies or alignments are valid revision operators on the network.

Proposition 5.15 ([EUZENAT 2015]). If +̇ satisfies +̇1–6, then the operation ⊞̇ defined as

⟨{O},∅⟩⊞̇δ/O = Cn(⟨{O+̇δ},∅⟩)

satisfies ⊞̇1–6.

The same applies for alignments:

Proposition 5.16 ([EUZENAT 2015]). If ⊕̇ satisfies ⊕̇1–6, then the operation ⊞̇ defined as

⟨{O,O′},{A}⟩⊞̇µ/A = Cn(⟨{O,O′},{A⊕̇µ}⟩)

such that A is an alignment between O and O′, satisfies ⊞̇1–6.

These properties are interesting in their own right but do not provide any concrete global revision operation.
There are two problems related to the inconsistency and modification steps of Figure 5.4.

The first problem when considering networks of ontologies is that the notion of consistency to take into
account is now related to the network of ontologies and not anymore to the locally affected ontology or align-
ment. It may happen that the added formula or correspondence does lead to global inconsistency but not local
inconsistency (as in Cases 2 and 3 above). What happens, is that ⟨Ω,Λ⟩⊞̇δ/O is inconsistent while O+̇δ is
consistent. The inconsistency could be brought by the incompatibility of the remaining models of O+̇δ with
the rest of the network. The same may apply with alignment revision (Case 3): it may be the case that ⟨Ω,Λ⟩
is consistent, that A⊕̇µ is consistent but that ⟨Ω,Λ⟩⊞̇µ/A = Cn(⟨Ω,Λ ∖ {A} ∪ {A⊕̇µ}⟩) is inconsistent.

This problem is relatively easy to solve in the case of partial-meet revision by replacingM(K ′ + δ) and
M(A′+µ) byM(⟨Ω,Λ⟩+δ/K ′) andM(⟨Ω,Λ⟩+µ/A′) in the definitions of K⊺δ (§5.3.2) and A⊺µ (§5.3.3)
respectively.



64 5 Belief revision

The second problem is related to the way to apply revision: in these cases, applying local revision operators
would not change the network as the local structures are consistent, and thus would result in an inconsistent
network, thus thus violating ⊞̇5. This shows that it is not safe to revise a network of ontologies with one formula
or one correspondence by only applying a local revision operator.

However, this does not prevent anyone from taking advantage of local revision operators. Indeed, if applying
such a local revision operator restores consistency, then it will be a valid revision operator and even a minimal
one with regard to the locality of the changes that have been made. But there may be cases where more is
needed for restoring consistency.

5.4.4 Partial-meet revision operators for networks of ontologies

Partial-meet revision is the intersection (meet) of selected networks resulting from the addition of the revising
statement to maximal subnetworks consistent with it.

It is possible to define maximal consistent subnetworks with respect to syntactic subsumption. There can
be two maximal consistent subnetwork operators depending on what is to be revised (ontology or alignment):

Definition 5.17 (Maximal consistent subnetworks of ontologies). Given a network of ontologies ⟨Ω,Λ⟩, an
ontology O ∈ Ω (resp. an alignment A ∈ Λ) and an assertion δ (resp. a correspondence µ), the set of maximal
consistent subnetworks of ⟨Ω,Λ⟩ with respect to δ in O (resp. µ in A) is defined by:

⟨Ω,Λ⟩ ã δ/O = {⟨Ω′, Λ′⟩ ⊑ ⟨Ω,Λ⟩;M(⟨Ω′, Λ′⟩ ⊞ δ/O) ≠ ∅, and

∀⟨Ω′′, Λ′′⟩; ⟨Ω′, Λ′⟩ < ⟨Ω′′, Λ′′⟩ ⊑ ⟨Ω,Λ⟩,M(⟨Ω′′, Λ′′⟩ ⊞ δ/O) = ∅}
⟨Ω,Λ⟩ ã µ/A = {⟨Ω′, Λ′⟩ ⊑ ⟨Ω,Λ⟩;M(⟨Ω′, Λ′⟩ ⊞ µ/A) ≠ ∅, and

∀⟨Ω′′, Λ′′⟩; ⟨Ω′, Λ′⟩ < ⟨Ω′′, Λ′′⟩ ⊑ ⟨Ω,Λ⟩,M(⟨Ω′′, Λ′′⟩ ⊞ µ/A) = ∅}

These operators return sets of networks of ontologies in NΞ which are subsumed by ⟨Ω,Λ⟩ and which remain
consistent when the corresponding element is added.

Consider the inconsistent network of Figure 5.3 (p.60). The axioms involved in the inconsistency are those
10 edges marked in red. The network can be the result of adding any of these statements to a network that does
not contain it (p.60).

Table 5.2 shows, when suppressing each of these statements, some of the consequences that have to be
suppressed with it for being a maximal consistent subnetwork of ⟨{O1,O2 ∪ {G},O3},{A1,2,A1,3,A2,3}⟩.
Only a few of these consequences are considered, there are many others. The shape of the subnetworks is
very dependent of the initial network. In some cases, it may be necessary to suppress several axioms to obtain
consistent subnetworks or that some involved axioms are entailed by other axioms.

Each of these subnetworks may be used in partial-meet revisions, except the one which is generated by
suppressing the axiom by which the revision arises, i.e. if the inconsistency is raised through revising the
network without statement o1:Person�o1:Device by this very statement, then S1 is not a maximal subnetwork
consistent with o1:Person�o1:Device.

The intersection of all these networks but one, will be very small.
Figure 5.5 displays an extreme example of a network. This network is inconsistent in the interpretation of

Definition 3.4, though none of its ontologies nor alignments is inconsistent. The inconsistency manifests itself
by starting with the network without one of the correspondences and revising it by this correspondence. It can
only be solved by suppressing one of the other correspondences.

For generalising partial-meet revision, we need a meet operation between networks of ontologies. Because
we are dealing with very specific networks of ontologies in NΞ resulting from the reduction of ⟨Ω,Λ⟩, we
can restrict ourselves on a specific definition for meet (corresponding to the normal fibred meet in [EUZENAT
2014b]):

⟨Ω′, Λ′⟩⊓̇⟨Ω′′, Λ′′⟩ = ⟨{O′i ∩O′′i }i∈Ξ ,{A′i,j ∩A′′i,j}i,j∈Ξ⟩
It can be checked that ⟨Ω′, Λ′⟩ ⊑ ⟨Ω′′, Λ′′⟩ iff ⟨Ω′, Λ′⟩ = ⟨Ω′, Λ′⟩⊓̇⟨Ω′′, Λ′′⟩. The meet of consistent subnet-
works is always consistent since it is subsumed by consistent networks (downward consistency preservation).
Moreover, if networks are closed, then their meet is closed as well (because it meets closed networks). Finally,
the meet of subnetworks of ⟨Ω,Λ⟩ is still subsumed by ⟨Ω,Λ⟩.

It is now possible to define partial-meet revision operators for networks of ontologies:
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subnetwork axiom O2 O3 A1,2 A1,3 A2,3

S1 o1:Person�o1:Device × × ×

S2 d2:Nina <− o2:Singer × × × ×

S3 o2:Singer ⊑ o2:Musician × × × × ×

S4 o2:Musician ⊑ o2:Person × × × × ×

S5 o3:MusicPerformingDev ⊑ o3:Device × × × × × ×

S6 o3:MusicInstrument ⊑ o3:MusicPerformingDev × × × × × ×

S7 o3:Voice ⊑ o3:MusicInstrument × × × × × ×

S8 o1:Person ≥ o2:Person × × × ×

S9 o1:Device ≥ o3:Device × × × × ×

S10 o2:Singer ≤ o3:Voice × × ×

Table 5.2. Maximal consistent subnetworks of ⟨Ω,Λ⟩ (obtained by removing from the closed network, an axiom and its
proper consequences).

o2:Person o3:Device

d2:Nina

�

∈∋

O2 O3

O1

Figure 5.5. Globally inconsistent network of ontologies: it has no model, yet each onlology and each alignment with its
two aligned ontologies are consistent.

Definition 5.18 (Partial-meet revision operators for networks of ontologies). Given a network of ontologies
⟨Ω,Λ⟩, an ontology O ∈ Ω (resp. an alignment A ∈ Λ) and an assertion δ (resp. a correspondence µ), partial-
meet revision is defined by:

⟨Ω,Λ⟩⊞̇δ/O = ⊓̇γ(⟨Ω,Λ⟩ ã δ/O) ⊞ δ/O
and

⟨Ω,Λ⟩⊞̇µ/A = ⊓̇γ(⟨Ω,Λ⟩ ã µ/A) ⊞ µ/A
Partial-meet revision on networks of ontologies is indeed a valid revision operator.

Proposition 5.19 ([EUZENAT 2015]). Partial-meet revision on networks of ontologies satisfies the six basic
revision postulates for revision of networks of ontologies.

Conclusion

Inconsistent and incoherent knowledge makes it non usable. It may be possible to repair it locally, however
this becomes quickly non practical and weakly justified. Belief revision offers well-thought principles which
bind the revision operators. Belief revision initially defined syntactically can better deal with ontologies when
expressed semantically. Hence, this is through using the semantics defined in Chapter 2 and 3, that they are
adapted to ontologies, as discussed in this course, and of alignments. Revision in networks of ontologies can-
not be reduced to revising locally ontologies or alignments. Hence, operators and postulates have also been
provided for networks.
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With such types of operators, it is possible to ensure that the evolution of knowledge occurs consistently.
Although this provides a global strategy for addressing inconsistency problems, they are usually considered
within the local perspective of individual agents. This is what is considered in the following chapters.

Quiz
– What is the purpose of belief revision?
– What is the difference between theory revision and base revision?
– Which are the problems in applying belief revision to (description logic) ontologies?
– May the revision by an ontology formula lead to changes in an alignment?
– May the revision by an alignment correspondence lead to changes in an ontology?
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[EUZENAT 2015] Jérôme Euzenat, Revision in networks of ontologies, Artificial intelligence 228:195-216,

2015
[FALAKH, RUDOLPH, and SAUERWALD 2023] Faiq Miftakhul Falakh, Sebastian Rudolph, and Kai Sauer-

wald, AGM belief revision, semantically, tech. rep. 2112.13557, arXiv, 2023
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Cultural knowledge evolution

IN WHICH RELYING ON STATIC BRIDGES AND REVISION OPERATORS BETWEEN KNOWLEDGE REPRESENTA-
TIONS IS NOT SUFFICIENT: COMMON KNOWLEDGE IS GROUNDED ON COMMON EXPERIENCE — WE INVES-
TIGATE HOW DYNAMIC TECHNIQUES OF CULTURAL EVOLUTION CAN BE COMPATIBLE WITH KNOWLEDGE

REPRESENTATION SEMANTICS — TO EVOLVE IT AND IMPROVE KNOWLEDGE COHERENCE.

The semantics of distributed knowledge has been provided from above, by considering an established net-
work of ontologies. The evolution of a network of ontologies has been considered through belief revision. Belief
revision also does consider the situation from above: it is based on the complete knowledge of the network.
Yet, it still faces a difficulty: how to select the preferred revision?

Here the problem of knowledge evolution will be considered from an individual perspective. In general
knowledge can be acquired through observing the environment. It can also through being transferred from
an agent to another. However, in our societies a lot of knowledge is implicitly acquired through cooperating.
Especially when agents use their knowledge to act. In particular, agents achieve it through assuming that they
understand each other and when evidence is found that this is not the case, adapting their knowledge for better
cooperation. This way of revising beliefs and knowledge works like if the environment, including the society
of agents, applied selective pressure to agent knowledge.

I will consider this from the standpoint of co-operating agents and the influence this may have on their
knowledge. In that respect, agent perception may still be considered as data in RDF and their knowledge as
ontologies in OWL. Other agents are part of each agent’s environments and interaction may be thought of as
perceiving other agents’ actions and performing actions that others will perceive. Indeed, communicating is
acting [AUSTIN 1962]. However, I will specifically distinguish between an environment and a society which is
made of the agents with which an agent interacts.

Of course, it may be simpler to consider agents simply offering their knowledge to everyone. However, this
would raise some problems: this knowledge may not be compatible. In order to understand each other, agents
would first need to agree on common knowledge: a culture.

I introduce the perspective of cultural evolution, that I apply to knowledge (§6.1). Cultural evolution is an
attempt to understand how a group of agents can reach shared knowledge through cooperating or interacting.
Experimental cultural evolution provides a methodology for simulating knowledge evolution (§6.2) and this is
applied to alignment repair (§6.3).

6.1 Cultural knowledge evolution: motivation

Evolution is a control mechanism based on three principles:
– Variation;
– Transmission (inheritance for biology);
– Selection.

It can be applied to a variety of objects.
Cultural evolution comes initially from anthropology; however, it has spread to the whole social science an

humanities field [PLOTKIN 1993; MESOUDI 2011]. It is based on the study of some phenomena such as beliefs,
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attitudes, knowledge, customs, values, etc. broadly called culture. These are pieces of information that may be
shared between people and determine their behaviour. Culture may vary from person to person, be transmitted
from person to person and thus shared among people. It is also subject to selection. Hence, it is prone to be
considered under the light of evolution theory.

A specific view of evolution mechanisms is provided by the replicator-interactor model (Figure 6.1). This
model considers that there is an entity called the replicator (the genome in biology) which specifies features
of individuals, the interactor (the phenotype in biology). This replicator replicates (through reproduction in
biology) in an imperfect manner, which causes variation, to lead to new individuals. The replicator is thus
transmitted (inherited by the offspring in biology). The interactor interacts with the environment which imposes
it selective pressure: by draining too much resources, it reduces reproduction. Hence, replicator transmission
occurs differentiality with respect to the interactor ability to respond to selective pressure.

GenotypeReplicator

individual

generation i

population

Interactor

causes

causes

Genotype

generation i + 1

population

individual

Phenotype

causes

causes
replicates

(differentially)

environment
pressurespressures

pressures

Figure 6.1. Presentation of the replicator-interactor model in biology.

Considering Figure 6.1, it is possible to distinguish between culture acting as a replicator and behaviour
acting as an interactor. Indeed, culture influences behaviour but this is the behaviour which is subject to the
pressure of the environment, including other people.

The main difference between cultural and biological evolution (or genetic evolution) are that:
– Culture-bearer can modify, i.e. select, their own culture.
– Transmission in not inheritance any more, it is not from parents to children.
– Culture does not create the agent (unlike replicators).

These are well-documented objections that do not prevent to call this evolutionary.
Cultural evolution can be studied in various ways [MESOUDI 2011] broadly divided into:

– by observation of actual behaviour: this is mostly what is considered in fields such as anthropology, arche-
ology, sociology and even economics;

– by controled experiments on people or animals: this is what is achieved in psychology, ethology, etc.
However, this can also be studied by computational means. In particular, in silico computational experiments
may be designed to study cultural evolution.

6.2 Experimental methodology for computational cultural evolution

Experimental cultural evolution applies multi-agent simulation to cultural artifacts. There has already been
various such experiments for abstract culture propagation [AXELROD 1997], language transmission [KIRBY,
CORNISH, and SMITH 2008] and cultural language evolution [STEELS 2012]. The latter offers a systematic
experimentation framework in which agents play ‘games’.
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6.2.1 Games

The game based methodology involves the following:
1. Agents with different information,
2. play a specific game or protocol,
3. with a goal to achieve, e.g. guessing something,
4. using this information;
5. at the end of each game, they adapt their information to account for the issue of the game.
The information considered here may be knowledge, know-how, rules, etc.

These types of games are relevant to cultural evolution because culture is: (a) information with variation
(1) (b) that determines behaviour (in the game, 4) (c) can be transmitted (through jointly playing the game, 2)
(d) and is subject to selection (by the agents 5, but motivated by their will to achieve their goal, 3).

An instance of such a game is the situated naming game [STEELS 2012] whose rules are:
1. A robot tells the name of an (randomly chosen) object (if it has no name a new one is created);
2. The other robot must identify the object and designate the object;
3. The first robot perceives what is shown and nods if it corresponds to his name (SUCCESS);
4. Otherwise (FAILURE), he points at the actual object;
5. The second robot records the outcome of the game and adapt its lexicon in consequence.

Luc Steels [STEELS 2012] distinguishes between three types of experiments:
Baseline experiments provide agents with ‘perfect’ information and check that agents can play the games

successfully, i.e. the success rate is good. This may become a baseline for other experiments.
Acquisition experiments in which instructor agents, with ‘perfect’ information, are able to transmit/teach it to

other agents. This shows that the perfect information can be acquired.
Formation experiments in which agents start with basic or no information and have to acquire it to play the

game. So, agent can not only learn information, but also create it.
Here I concentrate on formation experiments, without targeting any ‘perfect’ information. Of course, in order
to yield conclusive results it is necessary to check that agents improve their ability to play the game (success
rate).

6.2.2 Protocol

A specific number of such games are played sequentially for a specific population of agents. Usually, at each
iteration the instance of the game (agent playing, objects considered) is determined randomly. Hence, several
runs of this protocol are performed.

During the game some measures are monitored. One typical measure is the success rate achieved by agents,
i.e. for any iteration the proportion of previous successful games. It is important that the success rate evolves
positively, because it indicates that the agents behave adequately: they modify their culture in a way that make
them achieve their goals.

This approach can be defined more formally. Given a population A of agents and Ka,t the cultural back-
ground of agents a at time t. For each game it is involved in, agent a ∈ A uses its culture to react to the proposed
game instance s (for situation). This determines the outcome of the game f(Ka,t, s) which may be evaluated
as a success (success(f(Ka,t, s))) or failure(¬success(f(Ka,t, s))). In function of the outcome, the agent
adapts its culture by applying it an adaptation operator op: Ka,t+1 = op(Ka,t, s, success(f(Ka,t, s))).

In the case of the naming games, the measured quantities are provided in Figure 6.2: (a) success rate, called
communicative success, (b) number of concepts, prototypical views per agents, (c) size of lexicon used by all
agents. The figure shows that (a) the success rate quickly reaches a value after which it always improve (always
successful), (b) after a peak due to agents generating random names, the size of the lexicon stabilises around a
size commensurate with the number of objects, (c) the number of prototypes agents can distinguish grows and
stabilises. The confidence intervals show the stability of theses values over the several runs of the experiment.

6.2.3 Application to knowledge (and beliefs)

Such an approach can also be applied to knowledge:
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Figure 6.2. Results of the naming game (from [STEELS 2012]).

– Agents are bearing knowledge (ontologies, alignments),
– that they use for interacting with each others and their environment,
– Locally adapting their knowledge at the issue of each interaction.

Agents interpret their knowledge according to its semantics.
After running random simulation on a large number of games, it is possible to observe global properties

of the resulting knowledge and of its evolution. In the case of knowledge, the most interesting properties are
epistemic properties. Besides success rate there are many different knowledge-based measures that may be
applied:
– consistency: is knowledge consistent, or the proportion of agents which have consistent knowledge,
– diversity: how different is each agent’s knowledge?
– correctness: is knowledge correct with respect to some ideal knowledge?
– accuracy: is knowledge prone to be successful in the game?

These measures are usually not accessible to agents, because they are global (diversity), because they require
external resources (correctness) or because they do not have the capabilities to compute them (consistency, see
§7.6.3).

6.3 Application to cultural alignment repair

The framework of experimental cultural evolution has been applied to agent knowledge. One such applica-
tion is the alignment repair game in which agents interpret their ontology and the alignments between their
ontologies according to their semantics. They modify their alignments whenever the game shows them that a
correspondence is not correct.

This example is covered in detail in [EUZENAT 2014a] and [EUZENAT 2017].

6.3.1 The alignment repair game

The alignment repair game (ARG) is a cultural knowledge evolution game which takes alignments as culture
(not necessarily ontologies) that agents use to communicate and repair them when they reveal incorrect.

Objects are characterised by Boolean attributes which may be though of as OWL restrictions such as
∃≥1ob:plays.⊺ denoting those objects, here people, who play something, here a musical device. This may be
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Figure 6.3. Two ontologies and one random alignment.

shortened as ob:plays, the negation ¬ob:plays would then correspond to the complementary restriction ∀ob:plays.�
which characterises the objects which do not play anything.

Each fully characterised object will then correspond to an object type which is a conjunction of atomic
properties such as plays ∧ hasComposed ∧ playsIn ∧ ¬male, i.e. a female musician and composer who did play in
a band.

Each agent is provided with an ontology shaped as a dichotomic tree using all the attributes but one in
permuted orders. This means that at each level of the tree, the classes are separated into two along one single
property. The ontology Oa of Figure 6.3 is defined by the sequence of properties male/plays/hasComposed which
means, for instance, that class oa:c3 is defined by male ∧ ¬plays ∧ hasComposed.

Agents start with random alignments between their ontologies. These alignments must however satisfy two
constraints: (a) the topmost classes of each ontology must be equivalent, and (b) alignments must be functional,
i.e. there are no two correspondences ⟨c,≥, c′⟩ and ⟨d,≥, c′⟩, with c ≠ d, between the same pair of ontologies.
This starting point is illustrated by Figure 6.3.

The experimenter has access to the correct alignments between all the ontologies, that are called the refer-
ence alignments. Agents do not have access to them. They also do not have access to other agents’ ontologies,
only the name of their classes, which are all different.

Agents have no other goal than continuously playing an interaction game. The game is played as follows:
– Two agents (a and a′) are chosen at random,
– One agent (a) picks an instance (o) at random and asks the other one (a′) in which class it would classify

the instance in its own ontology (O) using the public alignment A between O and O′.
– a′ determines which correspondence is applicable and communicates both the correspondence (⟨c,≥, c′⟩)

and the class (c).
– a considers the relations between c and the most specific class d in which o is classified in O (o <− d):

– If c is compatible with d (concretely d ⊑ c) the interaction is considered successful,
– otherwise (c�d) it is a failure.

– Agent a communicate this to agent a′ who uses adaptation operators to adapt the alignment.
Considering the two ontologies and the alignment of Figure 6.3, with agent a on the left and agent b on the

right. The set of random correspondences is:

⟨oa:c13,≤, ob:c11⟩ ⟨oa:c0,≤, ob:c0⟩
⟨oa:c10,≥, ob:c11⟩ ⟨oa:c8,≥, ob:c13⟩ ⟨oa:c0,≥, ob:c0⟩

If object d2:g6 is drawn, apparently identifiable by male ∧ ¬plays ∧ hasComposed ∧ ¬playsIn. b will classify
this object as ¬playsIn ∧ male ∧ ¬plays, i.e. ob:c6. The most specific correspondence applicable to it is ⟨oa:c10,≥
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, ob:c11⟩. Hence, b answers with oa:c10. Since a classifies d2:g6 as male∧¬plays∧ hasComposed, i.e. oa:c3, which
is subsumed by oa:c10, the game is a success.

On the contrary, if object d2:Nina corresponding to ¬male ∧ plays ∧ hasComposed ∧ playsIn is drawn, then b
identifies it as playsIn∧¬male∧plays, i.e. ob:c3. The most specific applicable correspondence is ⟨oa:c8,≥, ob:c13⟩,
thus b answers with oa:c8. But a classifies d2:Nina as ¬male ∧ plays ∧ hasComposed, i.e. oa:c5, which is disjoint
from oa:c8, hence this time the issue of the game is a failure.

6.3.2 Adaptation operators

When communication fails, agents modify the alignment that has been used through adaptation operators (Fig-
ure 6.4). [EUZENAT 2017] defines six operators; we restrict ourselves to four of them.

More precisely, assuming that the correspondence ⟨c,≥, c′⟩ has been used, the operators that may be con-
sidered are:
delete simply removes the correspondence;
refine extends delete by adding correspondences ⟨c,≥, c′′⟩ between c and the subclasses c′′ of c′ that do not

subsume the actual class of the object and do not break functionality, i.e. there is not another correspondence
⟨x,≥, c′′⟩;

addjoin extends delete by adding a correspondence ⟨c′′,≥, c′⟩ between c′ and the lowest superclass c′′ of c
compatible with d;

refadd is the combination of refine and addjoin.
Figure 6.4 illustrates these operators. addjoin, and thus refadd, requires extra steps of interaction to provide

to b the subsumed classes in a ontology.
These operators share two particular properties [EUZENAT 2017]:

Safeness after applying the operator, if the same instance is chosen, the problem would not occur again (maybe
a different problem would occur);

Entailment each correspondence added by any of the operators was entailed by the removed correspondence.
These two properties can be thought of as the success and inclusion postulates of a contraction operator (Defi-
nition 5.3).

Because the problem is so simple, this can be seen as:
– Revision by ¬(o <− c) (the instance);
– Contraction by ⟨c,≥, c′⟩ (the culprit).

We consider the latter because agents do not memorise data, hence they do not need to believe an assertion
concerning a specific objects..

In the situation above, if after the presentation of object d2:Nina agent b uses the refadd operator, it will
delete the initial correspondence (⟨oa:c8,≥, ob:c13⟩) and add all the green correspondences (⟨oa:c14,≥, ob:c13⟩,
⟨oa:c8,≥, ob:c9⟩ and ⟨oa:c8,≥, ob:c4⟩) of Figure 6.4.

6.3.3 Protocol

Experiments depend on various parameters (actual values in parentheses):
– the size of the population (4 agents);
– the number of features identifying objects (4 features);
– the number of games played (10000 iterations);
– the operators (delete, refine, addjoin, refadd operators);
– the number of time the experiment is repeated (10 runs).

Various measures, averaged on the number of runs, are recorded:
Success rate measures the capacity of the agents to successfully play the game. It is the ratio of success over

games played.
Semantic precision and recall measures the quality of the alignments. They compute the degree of correctness

and completeness of the network of ontologies with respect to the reference network (F-measure averaging
them).
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Figure 6.4. The two ontologies of Figure 6.3 and the alignment adapted by refadd.

Incoherence rate is another quality measure which does not depend on an external reference such as the ideal
network. It is the proportion of incoherent correspondences in alignments.

Convergence measures the time taken by agents to converge. It is the last observed iteration at which an agent
encounters a failure.
It is possible to ask the following questions:

1. Does the process converge?
2. What is the effect of adaptation operators?
3. How do they compare to baselines?

6.3.4 Results

Figure 6.5 plots the success rate for the first 2000 iterations of each runs with the addjoin operator. It shows a
remarkable convergence between the runs: in spite of different random initial conditions and different games
played, the success rates curves are very close. After the first 200 games dominated by randomness, the success
rate converges assymptotically and at the same pace towards 100%. Indeed, as soon as the network of ontologies
has been cleaned up (around 1200 iterations), it reaches a stable state and agents do not encounter any more
failures. In consequence, the rate only grows. It never reaches 1 because of the initial period which contains
failures.
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Figure 6.5. Success rate for 10 individual runs with the addjoin operator ([20140306-NOOR] operator=addjoin; #agents=4;
#games=2000; #runs=10).

https://sake.re/20140306-NOOR
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Figure 6.6 shows the evolution over 2000 iterations of the success rate and F-measure of the four operators.
It shows that the convergence of the delete operator is achieved very quickly with the more elaborate operators
converging more slowly in proportion to the number of correspondences they introduce. The quality of the
delete operator is very low, barely above the initial random network of ontology. But the more elaborate the
operator, the higher its quality. Actually, Table 6.1 shows that at the end of the process these operators have
provided increasing recall, their capacity to entail a reference correspondence, at the expense of precision, the
capacity of their correspondences to be entailed by the reference network. This quality improves with each
further operator.
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Figure 6.6. Success rate (plain) and semantic F-measure (dashed) for operators delete/refine/addjoin/refadd([20180308-
NOOR] operator=delete,refine,addjoin,refadd; #agents=4; #games=2000; #runs=10).

Table 6.1 provides the measured values at the end of the 10000 iterations (averaged over the 10 runs). It
shows a very high success rate: most of their life span agents are correct. They have improved on most of the
measures over the initial network but semantic recall. This is due to incorrect correspondences in the initial
network which entail reference correspondences but discarded because they are not themselves correct. How-
ever, their alignments are far from perfect: they miss many correct correspondences compared to the reference
network and even the initial network.

In particular, Table 6.1 compare the results with those of two systems, LogMap and Alcomo, which are
alignment repair systems operating a kind of belief revision in the aim of restoring consistence. The two ap-
proaches work on different bases. Alignment repair systems have knowledge of the whole network of ontologies
but do not exploit the games; the agents do the opposite. Their 0 incoherence degree testifies that these systems
meet their goal. Although agents do not reach full consistency, they achieve higher quality improving both
precision and recall.

Success Inc. Sem. Sem. Sem. Max
Operator Size rate degree Precision F-measure Recall Conv.
reference 86 1.0 0.0 1.0 1.0 1.0 1
initial 54 0.24 0.34 0.11 0.20 0.89 -
delete 12 0.99 0.02 0.96 0.25 0.14 1224
refine 20 0.99 0.03 0.95 0.38 0.24 1224
addjoin 31 0.99 0.16 0.79 0.52 0.39 1526
refadd 48 0.99 0.15 0.79 0.67 0.58 1554
Alcomo 28 0.43 0.0 0.21 0.26 0.33 -
LogMap 29 0.51 0.0 0.24 0.26 0.29 -

Table 6.1. Measures at the end of the experiments and comparison with alignment repair systems ([20180308-NOOR]
operator=delete,refine,addjoin,refadd; #agents=4; #games=10000; #runs=10).

https://sake.re/20180308-NOOR
https://sake.re/20180308-NOOR
https://sake.re/20180308-NOOR
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6.3.5 Discussion

These results shows that, by using their knowledge in very simple games, agents are able to improve measurably
and predictably the quality of their knowledge. As can be observed, agents converge to alignments which allows
them to always succeed in the game. However, the quality of these alignments can be improved. The alignment
repair game has been complexified by introducing modalities [EUZENAT 2017]:
relaxation to answer less precisely which allows agents to discover faultly but hidden correspondences;
generation to introduce a new relevant correspondence when none is applicable (but ⟨⊺,≥,⊺⟩);
expansion to add new random correspondences when adaptation reduces the number of correspondences.
They have been shown to improve knowledge quality.

In addition, this cultural knowledge evolution experiments have been more broadly extended along different
directions:
– Starting with empty alignments;
– Learning ontologies and alignments;
– Altering ontologies;
– Involving several populations;
– Transmitting knowledge over generations.

The same games and operators are considered theoretically in Section 7.6.

Conclusion

Agents equiped with ontologies are able to reason (following ontology semantics). In the alignment repair
game, they use it to detect problems with incorrect alignment during communication. However, through co-
operation and adaptation using their knowledge (game playing), they can make it evolve. This leads to the
improvement of globally shared knowledge (culture).

Although the approach considered in this chapter largely differs from the previous ones, it remains very
connected. This chapter did not introduce a new semantics or new objects to be given a semantics. Instead
it uses the semantics of data, ontologies, alignments and eventually queries. This is what allows to detect
inconsistencies between agent answers and ontologies. The inconsistency is not treated globally as would be
done with belief revision, but by applying local adaptation operators, still obeying this semantics. It is the
repetitive play of random events which triggers evolutionary mechanisms and improves knowledge in the long
run.

Quiz
– What are the three main features of evolution theory?
– What would be the replicator and interactor in genetic? In cultural knowledge evolution?
– Why is failure important in cultural knowledge evolution games?
– How is cultural knowledge evolution related to belief revision?
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Multi-agent epistemic logic

IN WHICH THESE ATTEMPTS ARE RECAST IN DECADES OF TRYING TO CAPTURE KNOWLEDGE INTO LOGIC

— KNOWLEDGE IS TOO WILD TO BE CAPTURED, BUT LOGIC PROVIDES A SOLID TUTOR TO GROW ALONG.

Agents may express their knowledge independently and a semantics may be given to this knowledge. It
may also be connected through alignments and a semantics has been given for alignments. This is the basis for
interpreting queries taking advantage of knowledge and alignments. Finally, through cooperating, agents may
achieve alignments making sense with respect to the semantics.

However, this has been considered mostly from the standpoint of a single agent. It is difficult to have a
global view of all agents’ knowledge. . . and beliefs. The semantic structure of all agents, together with respect
to the situation in which they are, may be considered holistically. This should allow agents to behave not just
according to their own knowledge and beliefs, but to what they know and believe about about other knowledge
and beliefs and their shared beliefs. From initial agents’ knowledge and beliefs, it is possible to express the
way agents communicate information between each others and how this transforms their beliefs. This is what
multi-agent epistemic logics provide.

This chapter first progressively presents simple versions of:
– Modal logics (§7.1);
– Epistemic-doxastic logics (§7.2);
– Multi-agent epistemic-doxastic logics (§7.3);
– Multi-agent dynamic epistemic-doxastic logics (§7.5).

Before illustrating how such a multi-agent dynamic epistemic-doxastic logic may be used to model a simple
cultural knowledge evolution game (§7.6).

7.1 Basic modal logic

Modalities are syntactic markers to qualify logical statements. They indicate that these have to be considered
out of their immediate truth values. Historically, they were introduced for expressing that a proposition is not
simply true but necessarily true.

Definition 7.1 (Syntax of modal logic). The syntax of the basic modal logics is defined by:

ϕ ∶∶= p ∣ ϕ ∧ ψ ∣ ¬ϕ
∣ 2ϕ

such that p ∈ P is a proposition and 2 is the necessity modality.

As usual

ϕ ∨ ψ ≡ ¬ϕ ∧ ¬ψ
ϕ⇒ ψ ≡ ¬ϕ ∨ ψ
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A dual modality, possibility, also defined as:

3ϕ ≡ ¬2¬ϕ(possibility)

It makes sense that what is possible are those statements whose negation is not necessary.
For the sake of illustrating the concepts of modal logics, the taxonomical part of an ontology is encoded.

Encoding means that the ontology axioms are translated in a way that it is possible to translate the modal
formulas back into the ontology language. Consider the ontology O as displayed on the left hand side of the
following table, and summarised in Figure 7.1:

Ontology O corresponding statements encoding (TO)
o1:Person owl:disjointWith o1:Band ¬p ∨ ¬b 2(¬p ∨ ¬b)

o1:Person owl:disjointWith o1:Device ¬p ∨ ¬d 2(¬p ∨ ¬d)
o2:Ensemble rdfs:subClassOf o1:Band e⇒ b 3(e⇒ b)
o2:Singer rdfs:subClassOf o1:Person s⇒ p 3(s⇒ p)
o2:Singer rdfs:subClassOf o3:Voice s⇒ v 3(s⇒ v)
o3:Voice rdfs:subClassOf o1:Device v⇒ d 3(v⇒ d)

Finally, the encoding of O is the set of assertions of the right-hand side. The two disjointness constraints
will be considered as a subtheory: XO = (¬p ∨ ¬b) ∧ (¬p ∨ ¬d). The full ontology is considered as TO =
2XO ∧3(e⇒ b)∧3(s⇒ p)∧3(s⇒ v)∧3(v⇒ d). Hence the constraints are necessary, though the other
axioms are only possible.

It is interesting to study how this information is compatible with the existence of a specific singer (s).

dpb

vse

��
⊑⊑ ⊑

⊑

Figure 7.1. Representation of the axioms as description logic statements.

The semantics of modal logics was given with respect to a set of worlds and an accessibility relation. The
structure of the relation mandates axioms of the logic.

Definition 7.2 (Kripke structure). A Kripke structure is a triple M = ⟨W,;, V ⟩ such that
– W is a non-empty set of worlds;
– ;⊆W ×W is called the accessibility relation;
– V ∶ P → 2W is a propositional valuation mapping propositions to sets of worlds in which that proposition

is true.

Satisfiability in a modal logic is defined inductively with respect to a structure and a world in that structure.

Definition 7.3 (Satisfiability for modal logics). A formula is satisfied by ⟨M,w⟩ if:

M,w ⊧ML p iff w ∈ V (p)
M,w ⊧ML ϕ ∧ ψ iff M,w ⊧ML ϕ and M,w ⊧ML ψ

M,w ⊧ML ¬ϕ iff M,w /⊧ML ϕ

M,w ⊧ML 2ϕ iff ∀v s.t. w; v ∶M,v ⊧ML ϕ

M,w ⊧ML 3ϕ iff ∃v s.t. w; v ∶M,v ⊧ML ϕ

Any non-modal formula is evaluated at a world, modal formulas depend on the related worlds.
The two structures M and M ′ of Figure 7.2 are two different Kripke structures. Although they cover the

same set of worlds {w1,w2,w3,w4} with the same valuation V , their accessibility relations are very different:
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Figure 7.2. Two Kripke structures. The valuation V is displayed through the presence of propositions at each world they
are true, otherwise they are false.

M is connected, reflexive, symmetric and transitive, while M ′ is non connected, anti-transitive, anti-reflexive,
anti-symmetric, and not well-founded (contains circuits).

Both structures entail 2XO, as in no world p is true when either d or b is true. Hence, M ⊧ML 2XO and
M ′ ⊧ML 2XO.

In addition, M ⊧ML TO because each world is accessible by all the others and there is always one world
satisfying each clause. On the contrary, M ′ /⊧ML TO. More specifically, M ′,w2 /⊧ML 3(e ⇒ b), M ′,w3 /⊧ML

3(s⇒ p) and M ′,w1 /⊧ML 3(s⇒ v).
Concerning s, M ⊧ML 3s∧3¬s. M ′ is very special in this case since M ′,w1 ⊧ML 2¬s, M ′,w2 ⊧ML 2¬s,

M ′,w3 ⊧ML 2s, hence these three connected worlds do not agree. Moreover, M ′,w4 ⊧ML 2(s ∧ ¬s). Indeed,
when a world cannot access any other world, everything becomes necessary.

In the logics that will be considered here, the pair ⟨M,w⟩ is called a pointed model. I will adopt this
vocabulary and way of doing.

For M = ⟨W,;, V ⟩ we write:

M ⊧ ϕ if ∀w ∈W,M,w ⊧ML ϕ

but not

Γ ⊧ML ϕ if ∀M ∈M(Γ ),M ⊧ML ϕ

instead, we have:

Γ ⊧ML ϕ if ∀M = ⟨W,;, V ⟩,∀w ∈W,M,w ⊧ML Γ ⇒M,w ⊧ML ϕ

which is stronger.
This means that:

– a pointed model for a theory Γ is ⟨M,w⟩ such that ∀ϕ ∈ Γ , M,w ⊧ML ϕ;
– a theory Γ is satisfiable if it has a pointed model, inconsistent otherwise;
– a formula ϕ is a consequence of Γ if Γ ⊧ML ϕ (see above).

This entailment relation has the properties of a closure relation.
By imposing different properties to the accessibility relation, one obtains different logics satisfying different

axioms schemata. Table 7.1 provides some of the most common axioms and the corresponding properties. For
instance, axiom D requires that if something is necessary, then it may be possible. This seems obvious but given
the semantics of the language it is true only if from each world, there is an accessible world.

From these axioms it is possible to define different logics which take their names from them (Table 7.2).

7.2 Epistemic-doxastic logic

An epistemic-doxastic logic aims at modelling knowledge (epistemic) and beliefs (doxastic) through modali-
ties. It thus introduces two modalities: K for knowledge and B for belief.
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axiom name axiom scheme property definition
K 2(ϕ⇒ ψ)⇒ (2ϕ⇒ 2ψ)
D 2ϕ⇒ 3ϕ serial ∀v,∃w; v; w
T 2ϕ⇒ ϕ reflexive ∀v, v; v
B ϕ⇒ 23ϕ symmetric ∀v,∀w, v; w⇒ w; v
4 2ϕ⇒ 22ϕ transitive ∀u,∀v,∀w, u; w ∧w; v⇒ u; v
5 3ϕ⇒ 23ϕ euclidean ∀u,∀v,∀w, u; w ∧ u; v⇒ v; w

Table 7.1. Axiom schemata for modal logics.

logic name base axioms satisfied axioms relation type
K K any

KT KT KTD
KD45 KD45 KD45

S4 KT4 KDT4
S5 KT5 KDTB45 equivalence relation

Table 7.2. Modal logics defined from their axioms.

Definition 7.4 (Syntax of epistemic-doxastic logic). The syntax of the epistemic-doxastic logic is defined by:

ϕ ∶∶= p ∣ ϕ ∧ ψ ∣ ¬ϕ
∣Kϕ ∣ Bϕ

such that p ∈ P is a proposition and K and B are the knowledge and belief modalities.

As usual, dual modalities are also defined as:

K̂ϕ ≡ ¬K¬ϕ
B̂ϕ ≡ ¬B¬ϕ

Axiom schemata of modal logics may be reinterpreted with respect to the epistemic and doxastic modalities:

axiom name axiom scheme interpretation
K K(ϕ⇒ ψ)⇒ (Kϕ⇒Kψ) distributivity
D Kϕ⇒ ¬K¬ϕ consistency
N K⊺(≡K(ϕ ∨ ¬ϕ)) necessity
T Kϕ⇒ ϕ truth
B ϕ⇒K¬K¬ϕ
4 Kϕ⇒KKϕ positive introspection
5 ¬K¬ϕ⇒K¬K¬ϕ negative introspection

Table 7.3. Axiom schemata reinterpreted for epistemic logics.

Usually, K is a S5 modality and B a KD45 modality. This corresponds to the ‘Knowledge is true belief’
definition: then (T): 2ϕ⇒ ϕ holds for K, but not for B.

Additional glue axioms may be defined which relate the two modalities:

Kϕ⇒ Bϕ(KB1)
Bϕ⇒KBϕ(KB2)

The semantics of epistemic-doxastic logics uses the same set of worlds in which an agent may be situated,
but two different accessibility relations. These two relations will have different structures and to satisfy the
different axioms of the modalities.

We use the Epistemic-doxastic structure of [BALTAG and SMETS 2008] which has the advantage of using
a single relation from which the two specific relations may be derived systematically.
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Definition 7.5 (Epistemic-doxastic structure). An epistemic-doxastic structure is a triple M = ⟨W,≥, V ⟩
such that

– W is a non-empty set of worlds;
– ≥⊆W ×W is a converse well-founded, locally connected, preorder1 on W (plausibility relation);
– V ∶ P → 2W is a propositional valuation mapping propositions to sets of worlds in which that proposition

is true.

The plausibility relation w ≥ v reads as ‘v is at least as plausible as w’ (mind the inversion of v and w). In
figures, the arrows point to the most plausible world. Hence, if w ≥ v, then v is most plausible and the arrow
points to v.

This plausibility relation covers both an accessibility relation to be used for knowledge and a plausibility
relation to be used for beliefs. The epistemic and doxastic relations are defined on W accordingly:

w ∼ v if w (≤ ∪ ≥)∗ v
w; v if v ∈Max≤{v ∈W ∣ w ∼ v}

This particular definition makes that ∼ is an equivalence relation, as required for S5 supposed to represent
knowledge. The equivalence class of a world w for this relation ∣w∣ = {v ∈W ∣ w ∼ v} is called the information
cell of w. Each epistemic assertion is thus interpreted within the information cell of the considered world and
it has the same interpretation for each world of the cell. In addition, ; returns the most plausible worlds in
the information cell of w. The fact that beliefs are evaluated within the information cell directly entails the
satisfaction of Axiom KB1. KB2 is also satisfied because each world in the information cell has the same direct
most plausible world through ;.

Definition 7.6 (Satisfiability for epistemic-doxastic logic). A formula is satisfied by a pointed model ⟨M,w⟩
if:

M,w ⊧ELKϕ iff ∀v s.t. w ∼ v ∶M,v ⊧EL ϕ

M,w ⊧ELBϕ iff ∀v s.t. w; v ∶M,v ⊧EL ϕ

This definition and the following ones are not complete. They only display how to interpret what is new. They
should be completed by the same inductive decomposition as in the previous definitions, i.e. Definition 7.3.

The previous example may be encoded with epistemic and doxastic modalities. More precisely, the con-
straints are expressed as knowledge and the other clauses as beliefs.

The structures of Figure 7.3 have the same epistemic relation which identifies two information cells: ∣w1∣ =
∣w2∣ = ∣w3∣ and ∣w4∣. Knowledge and beliefs are evaluated within these cells.

Knowledge is evaluated in all worlds of an information cell and M ⊧EL KXO and M ′ ⊧EL KXO as the
constraints are still satisfied in all worlds. Beliefs are evaluated in the maximal elements of each cell. For each
cell, the maximum worlds for the doxastic relation (identified in green) may be different leading to different
beliefs. For instance, M ⊧EL B(s⇒ v) because (s⇒ v) holds in both w2 and w4. This is not the case of M ′

because M ′,w3 /⊧EL B(s⇒ v). Conversely, M ′ ⊧EL B(s⇒ p) but not M because M,w2 /⊧EL B(s⇒ p).

7.3 Multi-agent epistemic-doxastic logics

So far the logic has been considered from the standpoint of the knowledge of a single agent. It is far more
interesting to see it through several interacting agents.

The jump from epistemic logic to multi-agent epistemic logic is simple. Multi-agent epistemic logics:
– use as many pairs of modalities ⟨Ba,Ka⟩ as there are agents a ∈ A.
1 The relation satisfies:

converse well-founded ∀S ⊆W , S ≠ ∅, {w ∈ S∣∀v ∈ S,w ≥ v⇒ w = v} ≠ ∅

locally connected ∀v,w ∈W, ⟨v,w⟩ ∈ (≥ ∪ ≥−1)∗ ⇒ v ≥ w or w ≥ v

reflexive and transitive ∀u, v,w ∈W , v ≥ v and u ≥ v ∧ v ≥ w⇒ u ≥ w
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M

v,d, e v, s, d

s, p e, b

w1 w2

w3 w4
M ′

v, d, e v, s, d

s, p e, b

w′1 w′2

w′3 w′4

Figure 7.3. Two epistemic-doxastic structures. Surrounded by dotted lines are the information cells (conected components)
and, in green, their maximal elements.

– and as many accessibility relations ⟨∼a,;a⟩.
– A (pointed) model should satisfy the axioms of all agents.

Definition 7.7 (Syntax of multi-agent epistemic-doxastic logic). The syntax of the multi-agent epistemic-
doxastic logic is defined by:

ϕ ∶∶= p ∣ ϕ ∧ ψ ∣ ¬ϕ
∣Kaϕ ∣ Baϕ

such that p ∈ P is a proposition and Ka and Ba are the knowledge and belief modalities for each agent a ∈ A.

Dual modalities are also defined as:

K̂aϕ ≡ ¬Ka¬ϕ
B̂aϕ ≡ ¬Ba¬ϕ

Definition 7.8 (Multi-agent epistemic-doxastic structure). A multi-agent epistemic-doxastic structure is a
triple M = ⟨W,{≥a}a∈A, V ⟩ such that

– W is a non-empty set of worlds;
– {≥a}a∈A ⊆W ×W are converse well-founded, locally connected preorder on W (plausibility relation), one

for each agent;
– V ∶ P → 2W is a propositional valuation mapping propositions to sets of worlds in which that proposition

is true.

The ontology of the example, may be expressed with respect to two different agents a and b. Both knowledge
and beliefs may be reformulated with the corresponding operators. Figure 7.4 shows a multi-agent structure
for this example and the derived epistemic (∼) and doxastic (;) relations for agents a and b.

Contrary to previously, the agents have a different epistemic structure. Agent a has the same epistemic-
doxastic strutures asM , through agent b has three cells. It however remains true that they entail the constraints
expressed as knowledge (M ⊧MAEL KaXO ∧KbXO).

On the doxastic side, according to M , M ⊧MAEL Ba(e ⇒ b) ∧ Ba(s ⇒ v) ∧ Ba(v ⇒ d) but
M /⊧MAEL Ba(s ⇒ p) because M,w2 /⊧MAEL Ba(s ⇒ p) and M ⊧MAEL Bb(s ⇒ p) ∧ Bb(v ⇒ d) only
because M,w1 /⊧MAEL Bb(e⇒ b) and M,w3 /⊧MAEL Bb(s⇒ v).

M ⊧MAEL Ba¬p and there is no atomic proposition that b can believe in this model.
The plausibility relation w ≥a v reads as ‘w is at least as plausible as v for agent a’ and the epistemic and

doxastic relations are defined on W accordingly:

w ∼a v if w (≤a ∪ ≥a)∗ v
w;a v if v ∈Max≤a{v ∈W ∣ w ∼a v}
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Figure 7.4. A multi-agent epistemic structure with associated epistemic (∼) and doxastic (;) relations.

Definition 7.9 (Satisfiability for multi-agent epistemic-doxastic logic). A formula is satisfied by a pointed
model ⟨M,w⟩ if:

M,w ⊧MAELKaϕ iff ∀v s.t. w ∼a v ∶M,v ⊧MAEL ϕ

M,w ⊧MAELBaϕ iff ∀v s.t. w;a v ∶M,v ⊧MAEL ϕ

This allows to express statements such as ‘Bob knows that Alice believes that an ensemble is a band’
(M ⊧MAEL KbBa(e ⇒ b)) which is true in all worlds w ∈ W such that ∀w′;w ∼b w′, ∀w′′;w′ ;a w′′,
M,w′′ ⊧ e⇒ b. This is the case as, from any worlds accessible to b, the beliefs of a are reduced to those of w2

or w4 in which this statement is true.
‘Alice believes that Bob does not know that an ensemble is a band’ (M ⊧MAEL Ba¬Kb(e ⇒ b)) is true

only in w1, w2 and w3. This is because it is interpreted as true in pointed models ⟨M,w⟩ such that ∀w′ ∈
W ;w ;a w

′,∃w′′ ∈ W ;w′ ∼b w′′ and M,w′′ ⊧ e ∧ ¬b. For a there are two information cells: {w1,w2,w3}
whose maximal element is w2 and {w4}. In the former case, w2 give access to w1 and w2 and M,w1 ⊧ e∧¬b.
Thus, M,w ⊧MAEL Ba¬Kb(e ⇒ b) for w ∈ {w1,w2,w3}. In the latter case, w4 give access to itself in which
e ∧ ¬b is not true. Hence, M,w4 /⊧MAEL Ba¬Kb(e⇒ b).

7.4 Distributed and common belief and knowledge

Knowledge and belief modalities (Ka and Ba) marks what agent a ∈ A knows and believes. But what does
a group of agents G ⊆ A knows collectively? What do they believe? What are the relation between both? (do
KB1 and KB2 hold for these?)

There is a hierarchy of answers for knowledge2 to this question:
CKGϕ Common knowledge: Not only everybody knows ϕ, but everybody knows that everybody knows ϕ,

etc. (CKGϕ⇔ (ϕ ∧EKGCKGϕ));
EKGϕ Everybody knows: ∀a ∈ G;Kaϕ ≃ ⋀a∈GKaϕ;
SKGϕ Someone knows: ∃a ∈ G;Kaϕ ≃ ⋁a∈GKaϕ;
DKGϕ Distributed knowledge: ∪a∈A{ψ∣ ⊧Kaψ} ⊧ ϕ
ϕ Aware: ϕ is true (or ¬ϕ) but no agent knows it.
This hierarchy is organised from the stronger (top) to the weaker (bottom): if a statement satisfy some level,
then it satisfies the level below.

A precise semantics can be given to these different modalities:

Proposition 7.10 (Semantics of common and distributed knowledge [FAGIN, HALPERN, MOSES, and
VARDI 1995]). Given a set of agents G ⊆ A and a pointed model ⟨M,w⟩:

2 Inspired from https://blog.acolyer.org/2015/02/16/knowledge-and-common-knowledge-in-a-distributed-environment/.

https://blog.acolyer.org/2015/02/16/knowledge-and-common-knowledge-in-a-distributed-environment/
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M,w ⊧MAELCKGϕ iff ∀v s.t. w ∼∗∃G v ∶M,v ⊧MAEL ϕ

M,w ⊧MAELEKGϕ iff ∀a ∈ G ∶M,v ⊧MAEL Kaϕ

M,w ⊧MAELSKGϕ iff ∃a ∈ G ∶M,v ⊧MAEL Kaϕ

M,w ⊧MAELDKGϕ iff ∀v s.t. w ∼∀G v ∶M,v ⊧MAEL ϕ

with ∼∀G= ⋂a∈G ∼a, ∼∃G= ⋃a∈G ∼a and ∼∗ the transitive closure of ∼.

The same can be defined for beliefs.
So far we have seen from the previous section that the constraints are known by everyone (M ⊧MAEL

EKa,bXO), hence they are also believed by every one (M ⊧MAEL EBa,bXO). But, according to Propos-
tion 7.10, they are also common knowledge (M ⊧MAEL CKa,bXO).

It is also possible to see that v ⇒ d is believed, but not known, by everyone M ⊧MAEL EBa,b(v ⇒ d) and
M /⊧MAEL EKa,b(v⇒ d).

Finally, each statement of the whole ontology is believed by someone (M ⊧MAEL SBa,b(e⇒ b)∧SBa,b(s⇒
p) ∧ SBa,b(s⇒ v) ∧ SBa,b(v ⇒ d)) because as seen before M ⊧MAEL Ba(e⇒ b) ∧Ba(s⇒ v) ∧Ba,b(v ⇒
d) ∧Bb(s⇒ p).

Then M /⊧MAEL DBa,bs ∨ DBa,b¬s because, depending of the worlds, the beliefs of agents a and b are
different.

7.5 Communication as action: dynamic epistemic logic

Thus far, agents hold belief and knowledge, but they do not talk much. It is useful that agents can communi-
cate their knowledge or belief. Dynamic logics deal with action, i.e. world transformation. This is appropriate
because communication is action [AUSTIN 1962]. In dynamic epistemic logics, the communicative actions are
modelled as modalities which act as model transformers. This is different from other kinds of modalities that
are used to navigate in the model structure and evaluate propositions with respect to the position in the structure.
Transformational modalities modify the structure from which a proposition is evaluated.

Here, we mostly deal with ‘Public announcement logic’ in which the communicative actions are do not
need an actor and are available to all agents. More appropriate, but more complex, are private announcements
which are only available to a subset of the agents.

The syntax of dynamic epistemic logic defines such operators as modalities:

Definition 7.11 (Syntax of DEL). The syntax of multi-agent dynamic epistemic logic is defined by:

ϕ ∶∶= p ∣ ϕ ∧ ψ ∣ ¬ϕ ∣Kaϕ ∣ Baϕ

∣ [!ϕ]ψ ∣ [↑ϕ]ψ

such that p ∈ P is a proposition, a ∈ A is an agent and [!ϕ] and [↑ϕ] are dynamic upgrades.

Models are multi-agent epistemic-doxastic structures (Definition 7.8).

Definition 7.12 (Satisfiability for DEL). A formula is satisfied by a pointed model ⟨M,w⟩ if:

M,w ⊧DEL[!ϕ]ψ iff M !ϕ,w ⊧DEL ψ

M,w ⊧DEL[↑ϕ]ψ iff M ↑ϕ,w ⊧DEL ψ

where !ϕ and ↑ϕ are model transformers !ϕ ∶M →M !ϕ and ↑ϕ ∶M →M ↑ϕ with ∣∣ϕ∣∣M = {w ∈W ∣M,w ⊧DEL

ϕ} such that
Announcement (!ϕ) Delete all ‘¬ϕ’-worlds from the model. I.e. W !ϕ = ∣∣ϕ∣∣M , w ≥!ϕa v iff w ≥a v and w, v ∈

W !ϕ, V !ϕ(p) = V (p) ∩ ∣∣ϕ∣∣M ;

Conservative upgrade (↑ϕ) Change the plausibility orders so that the best ‘ϕ’-worlds become better than all
other worlds, while the old ordering on the rest of the worlds remains. I.e. W ↑ϕ = W , w ≥↑ϕa v iff either
w ∈Max≤a(∣v∣a ∩ ∣∣ϕ∣∣M) or w ≥a v, V ↑ϕ(p) = V (p).
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Dynamic upgrades are announcement of knowledge and beliefs that agents must hold. They are a way to
trigger and to implement belief revision through dynamic operators.

Dynamic epistemic logics use the same semantic structures as multi-agent epistemic logics. Only the effect
of dynamic modalities have to be considered. Figure 7.5 shows the structure M of Figure 7.4 after conserva-
tively upgrading by s or announcing s.

Conservative upgrades do not affect knowledge: they change the plausibility order but not its connectivity.
Hence, M ⊧DEL [↑ s](KaXO ∧KbXO) (or M ↑s ⊧MAEL KaXO ∧KbXO), as before. It does, however, affect
beliefs through the change of the plausibility relation. Here, its effect has been to change w1 ≥b w2 into
w2 ≥↑sb w1. Thus, after the upgrade, the maximal world of the information cell of w1 has become w2 for b. No
change has affected a’s beliefs (the plausibility relation has not changed), but M ⊧DEL [↑ s]Bb(e ⇒ b) and
M /⊧DEL [↑s]Bb(s⇒ p) because M,w2 /⊧MAEL Bb(s⇒ p).

It can be expected that, by promoting worlds with s, the upgrade would lead a and b to believe it. This is
not the case because the upgrade does not change the information cells, only the order between worlds within
a cell. Hence agents still do not believe s as the singleton cell made of world w4 does not entail it.

Similarly, announcement, by reducing the set of worlds should not decrease knowledge, but in general it
increases it. Hence, M ⊧DEL [!s](KaXO ∧KbXO). Moreover, suppressing all worlds not entailing s, makes s
known from a and b (M ⊧DEL [!s](Kas ∧Kbs)).

Concerning beliefs, the announcement has not changed those of a concerning s ⇒ p since there already
was M,w2 /⊧MAEL Ba(s⇒ p). But the beliefs of b in M !s have changed, since w2 is now the maximum element
of one of its cell: it also entails that b does not believe s ⇒ p any more (M /⊧DEL [!s]Bb(s ⇒ p)). On the
contrary, because world w1 has been suppressed (and is not the maximum element of a cell), this leads to
M ⊧DEL ¬Bb(e⇒ v) ∧ [!s]Bb(e⇒ v).
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s, p e, b
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Figure 7.5. The (Dynamic) multi-agent epistemic structures obtained from that of Figure 7.4 after the conservative upgrade
of s (left) and the announcement of s (right). At the bottom are the corresponding doxastic relations.

Such models provide a way to consider how different agents may see the world. It is thus possible to
determines which ‘moves’, e.g. knowledge adaptation, are reasonable for the agents.

7.6 Modelling the alignment repair game

Dynamic epistemic logic may be used in order to model the alignment repair game (§6.3.1) in logic and to assess
the properties of the game [VAN DEN BERG, ATENCIA, and EUZENAT 2021]. For that purpose, translation
operations are provided such that (see Figure 7.6):
– Agent’s ontologies are modelled as knowledge;
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– Alignments are modelled as beliefs;
– The communication between agents is modelled through communicative modalities;
– As well as adaptation operators.

The state of the ARG system at a particular iteration is a set of ontologies held by agents and a set of alignments
between them. It can thus be considered as a network of ontology (§3.2), that are called ARG states here.

ARG state (s = ⟨Ω,Λ⟩) DEOL axioms
τ

ARG state (α(s))

αoperator

DEOL axioms

π(α)
π

τ

Figure 7.6. The translation from ARG to dynamic epistemic logic.

The correspondence between the actions performed by the agents in the game and what holds in its logical
translation can be considered through two properties:

∀s, (τ(s))π(α) ⊧DEOL τ(α(s))(correctness)

∀s, τ(α(s)) ⊧DEOL (τ(s))π(α)(completeness)

Instead of asserting s, one would assert o2:Singer(d2:Nina).

7.6.1 DEOL: Dynamic epistemic ontology logic

An extension of multi-agent dynamic epistemic logic, called DEOL, is introduced to express networks of
ontologies (ARG states). It allows to encode, in a more elegant way than that given in Section 7.1 (p.78),
the ontologies and alignments used in the game. They only use class subsumption (⊑) and disjointness (�)
statements as well as class membership statements.

Definition 7.13 (Syntax of DEOL). The syntax of multi-agent dynamic epistemic ontology logic is defined by:

ϕ ∶∶= ϕ ∧ ψ ∣ ¬ϕ ∣Kaϕ ∣ Baϕ[!ϕ]ψ ∣ [↑ϕ]ψ
∣ C(o) ∣ C ⊑D ∣ C�D

such that C and D are class names and o an object name.

Here, it is implicit that C(o) corresponds to rdf:type(o,C), C ⊑D to rdfs:subClassOf(C,D) or to the correspon-
dence ⟨C,≤,D⟩, C�D to owl:disjointWith(C,D). Hence, instead of writing s⇒ p as in the previous section, one
will write Singer ⊑ Person. The novelty is that individual objects can be assigned to classes.

DEOL structures extend DEL structures in order to interpret ontological statements with respect to OWL
interpretations (§2.3.2). Hence, the main change is the use of OWL-like interpretations instead of propositional
valuations.

Definition 7.14 (DEOL structure). A DEOL structure is a quadruple M = ⟨W,{≥a}a∈A,∆,{Iw}w∈W ⟩ such
that

– W is a non-empty set of worlds;
– {≥a}a∈A ⊆W ×W are the plausibility relations on W , one for each agent, that are converse well-founded,

locally connected preorders;
– ∆ is the domain of interpretation;
– {Iw}w∈W are OWL interpretations of the vocabulary used in the worlds of W .

Satisfiability in a pointed model is defined exactly as it would for OWL.
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Definition 7.15 (Satisfiability for DEOL). A formula is satisfied by a pointed model ⟨M,w⟩ if:

M,w ⊧DEOL C(o) iff Iw ⊧OWL rdf:type(o,C)
M,w ⊧DEOL C ⊑D iff Iw ⊧OWL rdfs:subClassOf(C,D)
M,w ⊧DEOL C ⊑ C ′ iff Iw, Iw′ ⊧∆ ⟨C,≤,C ′⟩
M,w ⊧DEOL C�D iff Iw ⊧OWL owl:disjointWith(C,D)

Other formulas are interpreted like in Definition 7.12.

7.6.2 Translations

Once DEOL is defined, it is necessary to translate ARG states into a set of DEOL axioms. This is achieved
with a function (τ ) translating ontological statements as knowledge of the agent holding the ontology and
correspondences as beliefs shared by agents holding the related ontologies:

Definition 7.16 (Translation τ ). The translation τ from ARG states to DEOL theories is defined by:

τ(⟨{Oa}a∈A,{Aab}a,b∈A⟩) = ⋃
a∈A

{Ka(ϕ)∣ϕ ∈ Oa} ∪ ⋃
a,b∈A

{Ba(γ) ∧Bb(γ)∣γ ∈ Aab}

The translation provided by τ is faithful [VAN DEN BERG, ATENCIA, and EUZENAT 2021] in the sense
that:

Proposition 7.17 (Translation faithfulness [VAN DEN BERG, ATENCIA, and EUZENAT 2021]). Let s be an
ARG state for a set of agents A, then for each agent a ∈ A,

∀ϕ,Oa ⊧OWL ϕ⇒ τ(s) ⊧DEOL Kaϕ(ontology consequence preservation)
∀γ,Aab ⊧∆ γ ⇒ τ(s) ⊧DEOL Baγ(alignment consequence preservation)

if, in addition, s is locally consistent

∀ϕ, τ(s) ⊧DEOL Kaϕ⇒ Oa ⊧OWL ϕ(strict knowledge adherence)

Belief adherence does not hold because logical agents are able to reason globally, i.e. to compose their beliefs,
though ARG agents only reason locally with their ontology and one alignment at a time.

Then, the outcome of a game is rendered by announcements. There is a public announcement for the answer
of the queried agent and, if necessary, a set of conservative upgrades for the adaptation operator.

Definition 7.18 (ARG Dynamics in DEOL). Let T = τ(s) be the DEOL theory that is the translation of
an ARG state s. Then π(α[⟨Ca,≥,Cb⟩, o]) ∶ T ↦ T ′ is a theory transformation, with adaptation operator α,
correspondence ⟨Ca,≥,Cb⟩ and object o, where T ′ is defined as:

T ′ ∶=
⎧⎪⎪⎨⎪⎪⎩

T ∪ {[!Cb(o)]⊺} if Oa ⊧DEOL Ca(o)
T ∪ {[!Cb(o)]⊺, [π(α[⟨Ca,≥,Cb⟩, o])]⊺} if Oa /⊧DEOL Ca(o)

such that π(α[⟨Ca,≥,Cb⟩, o]) is the translation of the adaptation operator α applied to ⟨Ca,≥,Cb⟩ with object
o.

Definition 7.19 (Adaptation operators as dynamic upgrades). Let a correspondence ⟨Ca,≥,Cb⟩, an object
o, and an adaptation operator α, then π(α) is defined as:

π(delete[⟨Ca,≥,Cb⟩, o]) = ↑(¬(Ca ⊒ Cb))
π(addjoin[⟨Ca,≥,Cb⟩, o]) = ↑(¬(Ca ⊒ Cb) ∧mscca(o,Ca) ⊒ Cb)
π(refine[⟨Ca,≥,Cb⟩, o]) = ↑(¬(Ca ⊒ Cb) ∧ ⋀

C′
b
∈Mb(o,Cb)

Ca ⊒ C ′b)

π(refadd[⟨Ca,≥,Cb⟩, o]) = ↑(¬(Ca ⊒ Cb) ∧mscca(o,Ca) ⊒ Cb ∧ ⋀
C′

b
∈Mb(o,Cb)

Ca ⊒ C ′b)
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such that mssca(o,C) = µ⊑{D ∈ O;O ⊧OWL D(o) ∧C ⊑D}
and Mb(o,Cb) = µ⊒{D ∈ Ob ∣ Ob ⊧OWL D ⊑ Cb ∧ ¬D(o) and /∃ C ′a ∈ Oa;Aab ⊧ ⟨C ′a,≥,D⟩}
with µrS = {C ∈ S ∣ C ′ ∈ S ∧O ⊧OWL C

′rC ⇒ C = C ′}.

This corresponds to the operators as illustrated in Figure 6.4 (p.73).

7.6.3 Results

With respect to the properties introduced before, it can be proved [VAN DEN BERG, ATENCIA, and EUZENAT
2021], that:
– all presented operators are correct;
– all operators are incomplete (the logical model is far stronger than ARG agents);
– delete and addjoin are (unilaterally) partially redundant, i.e. for some agents, the upgrade does not provide

more information than the announcement.
There are two ways to interpret these results:

– Adaptive (ARG) agents are logically weak, and
– The logical model is not precise enough as it does not closely model ARG agents.

This is the result of a trade-off between adaptive and logical agents. The logic could be made closer to the
adaptive agents, or logical agents may be implemented. More work is necessary for better understanding the
mismatch between these two worlds.

Conclusion

In conclusion, dynamic epistemic logics can model cooperative cognitive agents. However, they make strong
assumptions on the capabilities of agents and rely on sophisticated semantic structures. They remain a good
guide for modelling the communication of distributed knowledge.

They also show some limitations:
– These are mostly propositional logics;
– They rely on models built from above (the theories contain all knowledge and belief of agents);
– We did not took advantage of nested formulas, such as KaBb(Kcϕ ∨Bdψ);
– We only presented public announcements, but in agent communication private (group) announcements

would be more adapted.

Quiz
– In modal logic, is S ⊧ S′ defined by ∀M,M ⊧ S ⇒M ⊧ S′ or by ∀M,∀w ∈WM ,M,w ⊧ S ⇒M,w ⊧ S′

? Does one expression implies the other? Why?
– What is the difference between the modalities for knowledge (K) and belief (B), informally, semantically,

axiomatically?
– In multi-agent epistemic logics, how does the semantics make knowledge and beliefs differ?
– In the presented epistemic logic, how is the relation between knowledge and beliefs dealt with?
– How is belief revision performed in the presented dynamic epistemic logic?

References
[ZACK 2020] Richard Zack, Boxes and diamonds: an open introduction to modal logic, 2020 https://bd.

openlogicproject.org/.
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Kool, Dynamic epistemic logic, Springer, Heidelberg (DE), 2018
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Conclusions

These notes are in no way conclusive: this course is here to open perspectives to students about the numerous
ways to approach distributed knowledge and its semantics. Each of these chapters are far from exhausting their
topic. On the contrary, it is expected that they opened the reader’s appetite for digging more deeply.

I tried to consider, at a simple level, different approaches to knowledge heterogeneity and dynamics that
can be witnessed every day. I focussed on the sheer semantic problems that they raise. I attempted to connect
such approaches as much as possible. However a lot of work remains to be done to theoretically and practically
connect them better.

How it will develop next, is up to the stimulated reader.

Quiz
– What is meant by ‘semantics’?
– For what defining the semantics of a logic or language is useful? Or, what can be done with the semantics

that cannot be done without it?
– Is this a problem if two agents express their knowledge (or beliefs) differently? Why?
– What does it mean for a structure to be inconsistent?
– How may errors in the interpretation of terms or formulas be identified?
– What is a model in this course?
– What does it means that a particular structure (formula, theory, etc.) entails another?
– What does it mean for a structure to be inconsistent?
– Is this a problem that two agents’ knowledge do not have the same models? Why?
– What does it means that two sets of knowledge have no common model?
– What are the two possible interpretations of the word ‘knowledge’ in this course?
– What is the benefit of connecting several knowledge sources together?





A

The model theoretic pattern, in a nutshell

During this course, I will use the model-theoretic semantic pattern which consists of:
– A language L for expressing statements ϕ ∈ L and sets of statements S ⊆ L (graph, ontology, alignment);
– Its semantics defined through interpretations: how an interpretation I satisfies a statements s ∈ L, I ⊧ ϕ;
– A model of S is an interpretation satisfying all statements in S; the set of models of S isM(S)).
– A statement ϕ is a consequence of a set of statements S (S ⊧ ϕ) if it satisfies all models of S; the set of

consequences of S is noted Cn(S) = {ϕ ∣ S ⊧ ϕ}.
– A set of statements with no model is said inconsistent; otherwise satisfiable.
– A set of statements S is entailed by, or consequence of, another S′ (S′ ⊧ S) if all models of S′ are models

of S;
– A SELECT query q[Ð→X] is a statement of L in which some entities are replaced by variables in

Ð→
X ; the

answers A(q[Ð→X], S) to the query q[Ð→X] in S, is the set of variable assignments σ such that S ⊧ σ(q[Ð→X]);
– A deductive system (or a reasoner) is able, from a set of axioms S, to find/check whatever statements

(completeness) and only those (correctness) it entails (Cn(S)).
These notions entertain some covariance relations:

S ⊆ S′ ⇒M(S) ⊇M(S′)⇒
S′ ⊧ S

Cn(S) ⊆ Cn(S′)

The Cn ∶ 2L → 2L function is a closure operation. This means that it satisfies the three properties:

S ⊆ Cn(S)(extensivity)
S ⊆ S′ ⇒ Cn(S) ⊆ Cn(S′)(monotonicity)
Cn(S) = Cn(Cn(S))(idempotency)

These are articulated as in Figure A.1.
Why does it matter? Because everything that will be implemented in a computer is in the position of a

deductive system whose correctness, and completeness, will be judged with respect to the defined semantics.
In this course, I only discuss the semantics. But it is desirable that implemented systems follow it and not the
other way around.
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L

S

⊇

deductive system

theorems
Th(S)

⊢

semantics

consequences
Cn(S)

⊧
≡

Figure A.1. The basic scheme of a (computational) logic.



B

Graphic notation

o1:Work o2:Person

o4:MusicPiece o2:Composer

dc:creator

mo:composer

rdfs:domain rdfs:range

rdfs:subPropertyOf⊑
rdfs:domain

owl:disjointWith

�

rdfs:range

rdfs:subClassOf ⊑ rdfs:subClassOf⊑

O

:b1

rdf:type∈

d2:Nina

rdf:type ∈

mo:composer
”Backslash blues”

rdf:label
G

o5:Artist

O′≤

?x

o2:Composer

rdf:typeq

σ

σ correspondence

ontologies

data set query variableliteral blank node resourceproperties

classes

instantiation subsumption disjointness inferred conflicting assignment

Figure B.1. Notation used in ontology graphs.





C

Assignments

With this course I am used to provide assignments between the sessions. Students are expected to send me their
results by email before the next session (since lectures occur in the morning, it is better to do this the morning
before). About the assignments:
– They are not exercises that should require long thinking.
– I assume that they should be allocated around 15 minutes.
– Assignments build on top of each other, but students can change the data/ontology/alignments of their

previous answer if this make things more meaningful.
– The main point of the exercise is that students try and identify problems and that the lecture can address

questions that they have already asked themselves.
– They are briefly and anonymously discussed at the beginning of each course to clarify misunderstandings

and missing points.
– This should encourage students to think about the course, and to consider it globally.

Assignment #1

The first assignment is to write down between five and ten short sentences (I mean short) in English about
things you know about a specific topic. Here we take the topic of ‘Grenoble’. There is not more constraint than
that.

C.1 Assignment #2

Assignment #2, is the following:
– Express some (or all) of the sentences you provided for the first assignment in RDF;
– Provide an ontology defining the terms and properties that you use.

Assignment #3

Provide an alignment between your ontology of Assignment #2 (or another ontology corresponding to the
assignement) and the ontology made of the concepts provided below. What this alignment allows to deduce
(entails), that was not entailed without the alignment?

The piece of ontology O1 of Listing C.1 is to be considered:
my: loca ted In r d f s : domain my: Place .
my: l oca ted In r d f s : range my: Place .
my: Inhab i tedPlace r d f s : subClassOf my: Place .
my: nb Inhab i tan t r d f s : domain my: Inhab i tedPlace .
my: nb Inhab i tan t r d f s : range xsd : p o s i t i v e I n t e g e r .
my: nameInhabi tant r d f s : domain my: Set t lement .
my: nameInhabi tant r d f s : range xsd : s t r i n g .
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my: Set t lement r d f s : subClassOf my: Inhab i tedPlace .
my: M u n i c i p a l i t y r d f s : subClassOf my: Set t lement .
my: Bu i l d i ng r d f s : subClassOf my: Inhab i tedPlace .
my: Bu i l d i ng owl : d i s j o i n t W i t h my: M u n i c i p a l i t y .
my: Bu i l d i ng r d f s : subClassOf : b0 .

: b0 owl : onProperty my: l oca ted In .
: b0 owl : onClass my: M u n i c i p a l i t y .
: b0 owl : q u a l i f i e d C a r d i n a l i t y 1 .

my: Event r d f s : subClassOf : b1 .
: b1 owl : onProperty my: date .
: b1 owl : onClass xsd : date .
: b1 owl : q u a l i f i e d C a r d i n a l i t y 1 .

my: l o c a t i o n r d f s : domain my: Event .
my: l o c a t i o n r d f s : range my: Place .
my: nbInSer ies r d f s : domain my: Event .
my: nbInSer ies r d f s : range xsd : p o s i t i v e I n t e g e r .
my: l a b e l r d f s : domain my: Event .
my: l a b e l r d f s : range xsd : s t r i n g .

my: Event owl : d i s j o i n t W i t h my: Place .

Listing C.1. Piece of ontology O1 about places and events.

as well as foaf:Person and the whole foaf ontology (you can look at it at http://xmlns.com/foaf/spec/).

Assignment #4

Translate the three conjunctive queries of Listing C.2 using your alignments:
/ / Find the c i t i e s where there i s a monument c a l l e d ‘ La b a s t i l l e ’
SELECT ? c i t y
WHERE {

?X r d f : type my: Bu i l d i ng .
?X r d f s : l a b e l ” La b a s t i l l e ” .
?X my: l oca ted In ? c i t y .
? c i t y r d f : type my: M u n i c i p a l i t y .

}

/ / L i s t a l l events and t h e i r c i t y o f occurence
SELECT ?event ? c i t y
WHERE {

?event r d f : type my: Event .
?event my: l o c a t i o n ? c i t y .
? c i t y r d f : type my: Set t lement .

}

/ / Who i s the mayor o f Grenoble .
SELECT ? f i r s tname ?lastname
WHERE {

?X r d f : type my: M u n i c i p a l i t y .
?X r d f s : l a b e l ” Grenoble ” .
?X my: hasMayor ?Y .
?Y f o a f : givenName ? f i r s tname .
?Y f o a f : familyName ?lastname .

}

Listing C.2. Three queries q1, q2 and q3 against ontology O1.

Do you think that these query would provide the expected answers and why?

Assignment #5

Consider a new ontology (O2 of Listing C.3):

o2 : House r d f s : subClassOf o2 : Place .
o2 : Jai lHouse r d f s : subClassOf o2 : House .
o2 : OperaHouse r d f s : subClassOf o2 : House .
o2 : C i t y H a l l r d f s : subClassOf o2 : House .
o2 : For t ress r d f s : subClassOf o2 : House .
o2 : AdminArea r d f s : subClassOf o2 : Place .

http://xmlns.com/foaf/spec/
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o2 : Town r d f s : subClassOf o2 : AdminArea .
o2 : GeoArea r d f s : subClassOf o2 : Place .
o2 : Mountain r d f s : subClassOf o2 : GeoArea .
o2 : River r d f s : subClassOf o2 : GeoArea .
o2 : H i l l r d f s : subClassOf o2 : GeoArea .
o2 : Lake r d f s : subClassOf o2 : GeoArea .

o2 : House owl : d i s j o i n t W i t h o2 : AdminArea .
o2 : House owl : d i s j o i n t W i t h o2 : GeoArea .

d : p0 r d f : type o2 : Place .
d : p0 r d f s : l a b e l ” France ” .

d : p1 r d f : type o2 : Town .
d : p1 r d f s : l a b e l ” Grenoble ” .
d : p1 my: l oca ted In d : p0 .

d : p2 r d f : type o2 : Town .
d : p2 r d f s : l a b e l ” Par is ” .
d : p2 my: l oca ted In d : p0 .
d : p1 owl : d i f f e ren tF rom d : p2 .

d : p3 r d f : type o2 : H i l l .
d : p3 my: l oca ted In d : p1 .
d : p3 r d f s : l a b e l ” B a s t i l l e ” .
d : p3 r d f : type o2 : Jai lHouse .
d : p3 r d f : type o2 : OperaHouse .
d : p3 my: l oca ted In d : p2 .
d : p3 r d f s : l a b e l ” B a s t i l l e ” .

Listing C.3. Ontology and graph O2 about the Bastille.

with its alignment A2,1 to the ontology O1 provided in Assignment #3:

o2 : Place < my: Place
o2 : House < my: Bu i l d i ng
o2 : AdminArea > my: M u n i c i p a l i t y
o2 : Town < my: M u n i c i p a l i t y

Listing C.4. Alignment A2,1 between O2 and O1.

– Is ontology O2 consistent? Coherent?
– Is the alignment A2,1 consistent? Coherent?
– Is the network of ontologies ⟨{O1,O2}{A2,1}⟩ consistent? Coherent?
– If no, can you identify statements that cause the inconsistency or incoherence? (can you tell what is wrong?)
– Is there, assuming that one of these statements were just added, local ways to restore consistency?
– What is the best solution to solve the problem in your opinion? Is it a partial meet revision?

Assignment #6

Define a protocol for evolving your ontologies:
– Identify and describe what could be an interaction using your current ontology and data (possibly align-

ment).
– Define what could be a failure in this interaction.
– Describe which adaptation could be applied to the knowledge (ontology, alignment) to improve knowledge

in reaction to the failure.
That may lead you to modify your ontology or your alignment.

The main point of this is that you think a bit about it; that you try.

Assignment #7

Provide a logical model of what agents know (ontologies) and believe (alignments) about Grenoble.
Explain how announcing some of their beliefs will lead them to evolve their models. In particular, con-

sider agents which may consider that ‘La bastille’ is a place in Grenoble or in Paris and the effect of public
announcements and conservative upgrades that ‘La bastille’ is a place in Grenoble.
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Semantics of distributed knowledge

Jérôme Euzenat

Knowledge is widely distributed within our society. It has to be accessed and combined to be properly
exploited.

These notes address the problem in dealing with distributed knowledge. They first consider how to represent
knowledge and especially classifications or ontologies. Because there may be different such representations,
they are aligned in order to create networks of ontologies. These networks enable answering queries based on
connected distributed knowledge and data. But their heterogeneity may lead knowledge to be inconsistent or
contradictory. Belief revision is then used in order to restore consistency within networks of ontologies. How-
ever, other ways to deal with distributed knowledge and its evolution exist. One of these, cultural knowledge
evolution, consists of selecting knowledge in an evolutionary way. It will be considered experimentally, through
multi-agent simulations, and theoretically through attempting at modelling it with dynamic epistemic logics.

The mentioned topics are not explored in depth. Instead, the tight relationships between these are considered
from a semantic standpoint.
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