
Master of Science in Informatics at Grenoble
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Dr. Jérôme Euzenat
Dr. Carole Adam

September 2016
This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)

funded by the French program Investissement d’avenir.





Abstract

This paper shows how agents can evolve their ontologies while trying to com-
municate, following a protocol inspired by cultural evolution experiment method-
ology. While other studies have dealt with evolving ontology alignments, we are
interested in refining the classification precision, which is accomplished during
the protocol: while communicating about objects encountered in the environment,
agents may discover the need to increase their classification precision in order to
reach an agreement with the interlocutor. They do so by creating and adopting
new categories from other agents that would help them discriminate better. We
conducted several experiments to show that a population playing this game will
always converge to a state of full communication success, when agents have stabi-
lized their knowledge and cannot learn any new categories.
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1
Introduction

The goal of our research is to show that it is possible for agents to refine their knowledge while
trying to improve communication. Representing knowledge as ontologies, we define ontology
refinement as improving the way agents classify observed objects from the environment to
obtain more precision.

1.1 Problem statement
For the purpose of reaching our goal, we need to answer the following research questions:

• Can we define an experimental set-up for ontology evolution?

• How is evolution influenced by the initial situation:

– the prior knowledge of agents

– the environment complexity, in terms of features and feature values objects from
the environment may have

A possible approach for investigating how agents could evolve their ontologies is simulating
the process of cultural evolution.

1.2 Cultural Games for Enhancing Agent Ontologies
by Acquiring Categories

Our approach to the problem stated above is to set up experiments that follow the approach of
cultural evolution studies, that would help us answer our research questions.

This involves designing a communication protocol, called game, in which randomly se-
lected agents interact with each other, trying to communicate about objects from the environ-
ment. Along these repeated interactions, the evolution of some parameters is monitored, among
which communication failure/success rate. The outcome of each interaction is the status of lo-
cal communication, which can be failure or success. The goal of agents is to minimize the
global communication failure rate, by performing a certain repair operation when local failure
occurs.

The parameters that we need to define for instantiating a cultural evolution game with the
scope of refining ontology content are communication failure and repair operation.



We consider that agent ontologies contain categories of interest, into which agents clas-
sify objects based on their observable features. Depending on their own experience and prior
knowledge, agents in the same environment can have different categories of interest. These
categories may have unobservable properties (for example, poisonous mushrooms) that agents
need to learn from one another.

Thus, in the game we design, we consider communication to be unsuccessful when one
agent observes that the other has a more discriminating classification. The repair operation is
defined as adopting the classes with assumed greater classification precision.

The expected result of a population playing this game is enhancing agent ontologies by
enriching their categories, depending on their prior knowledge.

Exemplified Ontology Enhancement Game

Pascal and Mary both observe a white square. Pascal identifies the object as Blanc, based
on its colour. Mary finds that the object belongs to both the categories of White and Square
objects. Therefore, she creates a new category, WhiteSquare, representing those objects that
have a white colour and a square shape. Mary tells Pascal that the object is a WhiteSquare and
Pascal records that there should be a relation between what he calls Blanc and what Mary calls
WhiteSquare. Since he had no previous relations between Blanc and Mary’s terminology, he
simply records it (we call this a success).

If Pascal would remember a previous interaction with Mary in which she called White an-
other object that Pascal called Blanc, Pascal would understand that Mary makes a difference
between White and WhiteSquare that he does not make. We call this a failure (because Pas-
cal realises that he fails to understand precisely Mary). In order to recover from this failure,
he would ask what difference she makes between White and WhiteSquare. Mary answers that
White objects are those whose colour is white and WhiteSquare objects are those who, in ad-
dition, have a square shape. Because they both share the feature vocabulary, Pascal can under-
stand these definitions and integrate the in his own classification. Pascal’s Blanc is the same as
Mary’s White, but he can create a new subcategory WhiteSquare from Mary.

We can imagine with this short example, how agents sharing features for describing the
world may evolve their ontologies through discovering the world(Mary creating WhiteSquare)
or communicating (Pascal learning it).

1.3 Outline
The methodology we are about to follow in our research consists in the steps below:

1. study related work on cultural knowledge evolution and artificial agents simulations
for a deeper understanding of the problem and for situating our solution in the context of
existing approaches

2. design an experiment consisting in a protocol of agent interaction that would allow a
population of agents to evolve their ontologies while communicating, for any random
initial conditions.

3. implement the experiment and integrate it in the existing framework of ontology network
evolution experiments ([1])
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4. formulate and test hypotheses, run the experiment, observe and analyse the results,

The outline of this report is organized with respect to the presented methodology. Thus
Chapter 2 presents the context of our research, and state of the art cultural evolution exper-
iments. Chapter 3 details the proposed cultural game, formalizes agent knowledge and en-
vironment representation and exemplifies the protocol on a few cases of interest. In Chapter
4 we present the results of several experiments, formulate hypotheses based on the observa-
tions and test them. Finally, Chapter 5 contains our concluding remarks regarding the current
contributions and possible directions of improvement.





2
Related Work

2.1 Cultural Evolution

Cultural evolution studies investigate the emergence and continuous evolution of a shared cul-
tural artifact in a population. Experiments with decentralized artificial agent systems have been
used to simulate this phenomenon.

2.2 Cultural Evolution of Language

The collection of articles in [6] defends the selectionist theory of language evolution, that
states that a shared language system can originate and evolve in a population by recruitment of
grounded cognitive capabilities to generate conceptualization strategies, selection of strategies
and language elements that improve communication and self-organization of agents by aligning
their local solutions [7].

Experiments in [6] use a methodology for simulating the cultural process of evolution in
a population of artificial agents through a series of local, decentralized interactions, called
language games. They involve a hearer and a speaker trying to communicate about objects
observed in the environment and updating their internal knowledge in order to succeed.

The cultural evolution terminology presented here will be detailed in the next section, ex-
emplifying how language games can be used to study spatial language.

2.2.1 Evolving Grounded Spatial Language Strategies

While some experiments in [6] only explore the emergence of vocabularies, others show their
co-evolution with and influence by grammatical structures. Following the latter, [4] experimen-
tally explores and demonstrates the selectionist theory of spatial language evolution using of a
whole system approach that has been validated by successfully reconstructing German locative
grammar and has shown that the use of grammar improves communication success.

Syntax influences the semantics of phrases and encodes a certain internal representation
of reality, called conceptualization strategy. A conceptualization strategy can be formalized
as a composition of cognitive operations an agent can execute to identify an object in space,
for which and implementation called Incremental Recruitment Language is proposed. In spa-
tial languages, multiple conceptualization strategies can be used to represent the same spatial



reality, varying in spatial relations systems (for example, proximal, projective or absolute),
perspectives, landmarks and frames of reference.

The article [5] explores the origin and evolution of spatial conceptualization strategies and
their influence on spatial vocabulary through various experiments that respect the language
games methodology from [6]. It demonstrates that through communication, a population that
initially shares only cognitive capabilities and has no local conceptualization strategies, spatial
concepts or lexemes can emerge to a shared spatial language system.

Spatial language game

The adapted language game is a situated experiment, with humanoid robots observing various
types object in a spatial environment. Each iteration involves selecting randomly a speaker and
hearer from the population, as well as an object that will be the communication topic: i) the
speaker tries to find a conceptualization strategy to describe the topic; ii) the speaker translates
the conceptualization into language, based on its private vocabulary; iii) the speaker utters the
production to the hearer; iv) the hearer tries to parse it, using its own strategies and concept
names; v) the hearer uses the decoded conceptualization strategy to identify the assumed topic
and indicates it non-verbally; vi) if it coincides with the intended topic, the game is successful.
Otherwise, communication failure is signaled by the speaker, which points to the intended topic.

Failure can occur at various points in the protocol, and agent can use various repair op-
erations (invention, adoption, alignment) to improve the success rate. They always select the
most distinctive and heuristically successful conceptualization strategy, spatial category or lex-
eme when different alternatives are available. The repair operations depend on the scope of the
experiment, as detailed in the three experiments of increasing complexity below.

Evolution of Grounded Lexicons

Grounded on a preexisting conceptualization strategy, agents invent (failure at step i.) and
adopt (failure at step iv.) spatial categories and corresponding lexicons, align categories in suc-
cessful interactions by updating their sample set, and align lexicons heuristically, by rewarding
successful category-lexicon constructions and punishing unsuccessful ones.

Thus, a population with empty initial spatial ontologies and lexicons can form a language
system with increasingly similar categories, that tends to full communication success.

Selection and Alignment of Spatial Conceptualization Strategies

In this experiment, the initial state contains different private conceptualization strategies.
Using the same repair operations as in the previous experiment, competing strategies and
their corresponding language systems are selected and aligned by rewarding or punishing them,
depending on communication success.

The preference of a strategy over another is highly influenced by the environment, and it
also encourages inventing categories of the preferred system while inhibiting the others. The
result is a single surviving language system.

Recruitment of Conceptualization Strategies

In addition to the previous operations, agents can invent spatial conceptualization strategies are
invented through recruitment (i.e. combination of grounded spatial cognitive operations). This
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allows more complex repair solutions:

• when the speaker fails to conceptualize (at step i.), it invents new strategies and associated
categories, it also invents new categories for existing strategies, and then selects the most
discriminating solution, for which it invents the corresponding lexeme.

• when the hearer fails, it invents new strategies and a new category corresponding to the
pointed topic, for each strategy. The most discriminating strategy and category pair is
selected, and a corresponding lexeme is invented.

In a population that initially shares only cognitive functions, agents are able to generate differ-
ent conceptualization strategies and associated language systems from scratch, converging to a
single strategy and system in the end, with increasing success rate and concept similarity.

2.2.2 Cultural Evolution of Knowledge Representation - Ontology
Alignment Repair

The article [1] represents a first attempt of applying cultural evolution to knowledge repre-
sentation. Here, knowledge is represented as ontologies, the artefact under evolution being
ontology alignments.

Overview

An alignment is a set of correspondences between elements (classes or properties) belonging
to two different ontologies. As explained in [2], a correspondence < e1,e2,r > consist of a
relation r (equivalence, disjointness, more general or less general) between an entity e1 from
the first ontology and an entity e2 from the second one. A set of ontologies and their alignments
creates an ontology network. A network is symmetric when, for every alignment between
an ontology o1 and another o2, there is also its converse alignment between o2 and o1 [1].
An alignment can be incoherent [3] when there exists an unsatisfiable concept in the merged
ontology (resulted from two ontologies and their alignment) that is satisfiable in one of the
ontologies.

The scope of this paper is restricted to improving incorrect alignments (alignment repair),
and its aim is to show experimentally that through a simplified cultural evolution protocol called
cultural alignment repair, agents will always reach a state characterized by complete co-
herence and correctness of alignments, successfully communication and improved alignments
quality.

Cultural repair is characterized by agents attempting to communicate and overcoming
failure through repair actions, that would improve communication. Agents do not change their
state as long as communication is successful, and the side effect of their repeated local repair
action is the evolution of the entire population.

Adapted to a network of consistent ontologies, each agent has access only to its own on-
tology and his interfaces (alignments) to other agents. An alignment models an agent’s as-
sumptions about the other’s knowledge. All agents trust their interlocutors and initially assume
their correspondences to be correct. When, through communication, an agent encounters an
inconsistency, it repairs it by reducing the correspondence scope.



Experimental setup

The proposed cultural repair game is intended to be very simple; being a cultural evolution
experiment, it is characterized by a communication protocol between agents, that is repeated in
iterations with randomized parameters (object of communication, interlocutors), thus simulat-
ing complete decentralization.

The environment contains equiprobable objects with n ordered binary features, and n
equiprobable agents, each having a different ontology. The ontologies used in this experi-
ment are simple taxonomies with disjoint relationships, in the form of complete decision trees
where each level corresponds to a feature, using k− 1 features. The root of all decision trees
is a special category that classifies all objects in the environment. Considering the features in
a circular permutation, the k-th agent uses no feature at the first level, the k-th feature at the
second level, the k+1-th at the third and so on until the k+n−2-th at the last level. The on-
tology network is initialized with a symmetric alignment, containing equivalence between the
top concepts, and a set of randomly generated equivalence correspondences between classes.
This may contain incorrect correspondences that would be repaired during the experiment.

The game protocol states that in each iteration, two randomly selected agents classify a
randomly generated object to its most specific class. The first agent uses its alignment to the
second agent to compare the results. If they are inconsistent (in the first ontology, the result
(target) is disjoint from the source class that corresponds to the second agent’s result), this is
considered a failure, and the first agent takes a repair action to weaken the detected incorrect
correspondence.

Results and Analysis

Experiments have been run by playing the game with n≤ 4 (for non-trivial results) in order to
prove the hypothesis and analyse the resulting state of the ontology network. The quality of
this state is analysed in terms of average degree of incoherence and semantic F-measure with
respect to the reference alignments.

By monitoring the rate of successful iterations, experiments show that after a certain num-
ber of iterations in which incorrect correspondences are repaired, the success rate always con-
verges asymptotically to 1, regardless of the game randomness (initial alignment, the object
and interlocutors of each round).

Different repair strategies that are entailed by the initial correspondence, reduce its scope
and avoid the current communication failure can be used: delete simply removes an incorrect
correspondence, replace weakens it from equivalent to less general, and add which, in addition
to replace, creates a more general than correspondence from the parent of the target to the
source. All the repair strategies eventually result in a fully coherent network and suppress all
incorrect correspondences. The more the correspondence is weakened, the faster the game
converges to full success, but the lower the final recall is. Thus, although the slowest, add
strategy is the most efficient and improves the initial F-measure.

The quality of the cultural repair with add method is compared to the results obtained
using alignment repair algorithms Alcomo (which discards correspondences) and LogMap
(which weakens them). These two algorithms may preserve incorrect correspondences as long
as the network is coherent. This may lead to less syntactic precision, but more semantic recall
than cultural repair. There is a large variation of F-measure results due to the dependence on
the initial alignment, but generally all three methods slightly improve the initial F-measure
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and obtain comparable values. It was experimentally observed that by increasing the size of
the problem (n > 4), the cultural method improves and obtains better results than the repair
algorithms. It is shown that the cultural repair results improve and exceed the other methods
by increasing the number of initial correspondences. This is explained by the tendency of the
repair algorithms to retain incorrect correspondences.

Conclusion

The article demonstrates that a very simple cultural evolution game can be used to successfully
repair alignments in a network, with agents acting locally and without knowledge of alignment
coherence. The resulting convergence state is fully coherent, is followed by successful com-
munication, and its quality is on par with well-known alignment repair algorithms. In contrast
with these algorithms, cultural repair never ignores incorrect correspondences, which can lead
to a higher F-measure quality of the result for a large initial alignment.

As agents use alignments to communicate, it is shown that they do not require correct initial
alignments to interact, are able to overcome communication failure locally and globally repair
the network alignment.

2.3 Conclusion
We have presented how cultural evolution games can successfully be used in experiments in
order to study the evolution of complex knowledge, like natural language [6]. The experi-
ments can lead to impressive results, allowing to study and reconstruct natural language from
conceptualizing about spatial relations, to grammar and vocabulary, starting only from shared
cognitive capabilities in a population [5].

Our proposed ontology evolution game follows [1]’s direction of studying cultural evolution
of knowledge representation in the form of ontologies. [1] is not concerned with evolving the
content of ontologies themselves, but with the alignment between them that facilitate communi-
cation. We are interested in studying how interactions between agents can influence the content
of the ontology, so instead of simply repairing alignment by discarding correspondences, we
will try to learn how to refine ontologies.





3
Proposed Ontology Evolution Game

3.1 Ontology Evolution Game
In order to reach our goal of investigating if it is possible for agents to refine their ontologies
while communicating, we have designed and implemented a cultural evolution experiment, in
the context of an existing experimental framework [1] for cultural evolution of alignments in a
network of ontologies.

The main characteristic of the experiment is that agents share the same conceptual frame-
work (consisting in features) on the base of which they construct different ontologies.

The experiment setup is composed of the following elements:

Environment consisting of objects described by the complete set of n features. Each feature Fi
can have mi possible distinct feature values, mi ≥ 2. The objects are equally distributed
with respect to the feature values.

Population k agents A1...Ak with corresponding ontologies Θ1...Θk. The ontologies contain:

• shared elements, with an implicit alignment between them:

– category Object classifying all objects in the environment
– all the defined features as object properties
– all their corresponding property values

• private elements: A randomly generated set of classes called categories, used to
classify objects from the environment based on their features. They are subclasses
of Object, formed as a conjunction between 0 to n constraints on property values.
All the possible categories are uniformly distributed.

Agents record their interactions with other agents in their private memory.

Game A game is composed of several rounds. In each round, a pair of agents is selected at
random with equal probability, and an object is generated at random from the environ-
ment. Both the agents classify the object into the most specific category of their ontology.
If the object belongs to more than one most specific category, the intersection class be-
tween them is created and added to the ontology. The second agent tells the first agent his
classification result, and the first agent records it into his memory, along with the class to
which the object belongs in his own memory.



Failure The first agent can find in memory previous interactions where he used the same cat-
egory as in the current round, while the second agent used different categories. This
indicates that the first agent fails to distinguish between objects in a case when the sec-
ond agent is able to, and the second agent has a finer classification than the first, so the
round it is considered a failure. Otherwise, the round is considered successful.

Repair is the action performed by the first agent in the case of failure. He asks the second agent
for the definitions of the two different categories, and adopts them into his ontology. In
order to avoid synonymy, a category is not adopted if the ontology already contains an
equivalent class.

Success measure is defined as the number of successful rounds divided by the total number of
rounds in a game.

Other measurements we also compute the number of new classes learned by each agent,
either by intersection with its own existing categories, or by adoption from other agents.

Thus, by following the simple communication protocol, there are two ways an agent can
obtain new categories:

• by intersection, inventing new categories on its own, based on existing ones, while dis-
covering the environment.

• by adoption, acquiring categories from other agents, through communication

While through intersection, an agent always creates a more precise category than his current
classification result, this is not necessarily true with categories obtained through adoption,
which can be less precise or at the same precision level. Nevertheless, adopting these cat-
egories helps the agent discriminate between objects it could not before, and they can help
create further more categories through intersection. We will later show experimentally that
adopting more general or just-as-general categories, after several iterations, will contribute to
increasing classification precision overall in the population.

3.2 Formal Description
This section formalizes the concepts involved in the experiment (environment, agent, object)
and details how agents can represent and operate with knowledge.

3.2.1 Representing Agent Knowledge
Agent ontologies represent their knowledge about the environment. We have chosen Descrip-
tion Logics to formalize these ontologies.

Shared Knowledge About The Environment

Let there be an environment containing the set of n features f1 ... fn. All agents contain the
following set of axioms:

Object≡ ∃ f1.> u ...u ∃ fn.> (3.1)
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which describe the class of all objects in the given environment, and state that all objects in the
environment must have all the established features.

For each feature fi with corresponding feature values Fi = { f j
i | j = 2...mi}, all agents have

an axiom

Objectv ∀ fi.{ f 1
i , ... f mk

i } (3.2)

which restricts the possible values of property fi that objects can have in the environment to
elements of the set Fi

fi is functional
values { f j

i | j = 2...mi} are all distinct

We establish through a convention that all agents

• share the same knowledge about features, represented into the axioms above (contain
Object class, the same properties and properties values, with the same corresponding
names)

• are aware that they share this knowledge

Thus, when an agent receives a message containing statements about properties or property
values from another agent, it knows that they are equivalent to the properties or property values
with the same name from its own ontology.

Agent Private Categories

Agent private category definitions can be generated from axiom 3.1, instantiating the top con-
cept> by replacing it with a feature value in none, some or all feature restrictions. For example,
a category of agent Ak that constraints feature f1 to value f a

1 , and feature f3 to value f b
3 is de-

fined as

Ak : f a
1 f b

3 ≡ ∃ f1.{ f a
1 } u ∃ f2.> u ∃ f3.{ f b

3 } u ...u ∃ fn.> (3.3)

which entails that category Ak : f a
1 f b

3 is a subclass of Object ( Ak : f a
1 f b

3 v Object). In
order to avoid synonymy, no two equivalent categories will exist in an agent’s ontology. This
leads to a total number of (|F1|+ 1)× ...× (|Fn|+ 1) possible categories an agent can have,
including Object category.

We must mention that axioms 3.3 are equivalent to conjunctions of restrictions on property
values. We have chosen to represent only simple ontologies with conjunctions for this phase of
our experiments, thus we do not include negation, or expressions like f1.{ f a

1 , f b
1 } u ..., which

would introduce disjunction. Introducing disjunction and negation would significantly increase
the number of possible categories.

This method leads to generating consistent, satisfiable ontologies, with categories defined
as conjunctions of constraints on property values.

An agent Ai can only see his own ontology Θi, his own memory, or classification history
Ti and the objects described by feature values.



3.2.2 Memory

The classification history table Ti keeps track of objects categorized by Ai and all the other
agents it interacted with. ∀ agent i, ∃ table Ti:
Object A1 ... Ai ... Ak
F(o j) =< F1(o j), ...,Fn(o j)> category(A1,o j) ... category(Ai,o j) ... category(Ak,o j)

where category(Ap,o j) ∀p is the signatures under which agent Ap has categorized object
o j. Because an agent only interacts with another agent during a round, say agent Ai only the
value of category(Ai,o j) would be non empty on that row.

3.2.3 Communication Protocol

What agents can communicate to each other is:

• category signatures (random names associated to classes, depending on the agent) - for
example Hans:SchwartzeDreieck

• category definitions (axiom defining a class as a conjunction of restrictions on certain
properties) - for example Hans:SchwartzeDreieck≡ ∃ color.{black} u ∃ shape.{triangle}

A game round is composed of the following steps:

1. Two agents Ai and A j are selected at random from the existing k agents.

2. An object from the environment is generated at random. The object is completely de-
scribed as a tuple of feature values for all its feature properties.

3. Agent i categorizes the generated object. If the object belongs to more than one ”leaf”
class in Ai’s ontology then Ai’s ontology is updated with their intersection class

4. A new line in table Ti is added for the generated object, and the label corresponding to its
most specific class from Ai’s ontology (category(Ai,o)), in Ai column of the table.

5. Agent Ai asks agent A j to categorize the generated object. If the object belongs to more
than one ”leaf” class in A j’s ontology then A j’s ontology is updated with their intersection
class

6. Agent A j communicates agent Ai the signature of category(A j,o), corresponding to the
most specific class object o belongs to in A j’s ontology. Ai stores this value in its Ti table
at the new object’s line, column A j.

7. If agent Ai observes that agent A j has a finer grain classification, discriminating between
objects that Ai considers to be in the same category (i.e. ∃ op s.t. in classification his-
tory table Ti, category(Ai,o)≡ category(Ai,op) and category(A j,o) 6= category(A j,op)),
then agent Ai asks for agent A j’s ontology class definition corresponding to the label
category(A j,op) of the most recent such object op, as well as the definition of category(A j,o).
If at least one of these classes did not already exist in Ai’s ontology, it is adopted by Ai
and the round status is considered failure. Otherwise, the round is successful.

14



3.2.4 Example

We provide an example by running the short example presented in the Introduction.

Game input

feature space: color = {black,white} shape = {square, triangle}
agent ontologies:

Pascal’s ontology Mary’s ontology
shared Object ≡ ∃ color.> u ∃ shape.>

Object v ∀ color.{black, white}
Object v ∀ shape.{square, triangle}

color is functional
shape is functional
blackuwhitev⊥

squareu trianglev⊥
private Pascal:Blanc ≡ ∃color.{white}u shape.> Mary:White ≡ ∃color.{white}u shape.>

Mary:Square ≡ ∃color.>u shape.{square}
The agent’s categories could be represented graphically:
PascalOb ject

Blanc

MaryOb ject

Square White

Round 1

round 1: object=<white, triangle>, Pascal’s turn
Pascal’s classification history

no. object Pascal Mary
1 <white, triangle> Pascal:Blanc Mary:White

The result of this round is success, and agent categories remain unmodified

Round 2

round 2. <white, square>, Pascal’s turn
Pascal’s classification history

no. object Pascal Mary
1 <white, triangle> Pascal:Blanc Mary:White
2 <white, square> Pascal:Blanc Mary:WhiteSquare

As we can see, Mary applies intersection to learn a new category: Mary:WhiteSquare. It
added the following axiom to its ontology (MaryI):

Mary:WhiteSquare ≡Mary:Square uMary:White



PascalOb ject

Blanc

MaryIOb ject

Square

WhiteSquare

White

Pascal finds an entry in history where, for his same result Pascal:Blanc, Mary’s result was
Mary:White, different than her current result Mary:WhiteSquare. He applies adoption to learn
to discriminate from Mary. Mary communicates him the following axioms:

Mary:WhiteSquare ≡ (∃color.>u shape.{square})u (∃color.{white}u shape.>)
Mary:White ≡ ∃color.{white}u shape.>

Because Pascal already has category Pascal:Blanc equivalent to Mary:White, it only adds
the following axiom to his ontology (PascalI):

Pascal:WhiteSquare from Mary
≡ (∃color.>u shape.{square})u (∃color.{white}u shape.>)

PascalIOb ject

Blanc

WhiteSquare from Mary

MaryIOb ject

Square

White Square

White

The result of this round is failure (because at least one category was adopted). Both agents
modify their categories by intersection and adoption.

3.3 Comparison With Related Work
What all agents share in both [1] and [5] is their ability to observe the same features of objects
in the environment. In addition, our solution needed to represent this knowledge about features
and their values in the agent’s ontologies, and establish a convention to use identical names
for them. Thus, agents in our proposed game also share a standard vocabulary about features,
and, like in [1], about the most generic class. This was necessary because our solution involves
agents communicating about features, shared knowledge about them being the building blocks
of private knowledge.

In the cultural alignment repair experiment [1], agents represent their knowledge about each
other through ontology alignments and perform repair operations to improve this knowledge.
In our proposed game, agents assume correspondences between classification results, that are
considered valid as long as both agents are able to discriminate between objects. The adopt
operations do not repair these assumed correspondences directly, but bring agents closer to an
agreement.

We propose this game as a model of knowledge transmission in a population of agents.
Sharing a conceptual framework based on features and feature values, each agent can have a

16



different classification system (here, ontology) composed of categories that the agent consid-
ers important based on some prior knowledge. Agents can evolve this classification system
through experience i) by exploring objects in the environment and discovering new categories
based on existing ones (when objects belong to more than one category, the agent is forced
by the protocol to use invention in order to communicate a single classification result); ii) by
communicating with other agents and learning from their experience (adoption).

3.4 Conclusion
We designed a cultural game for enhancing agent ontologies, where culture consists of cate-
gories of an ontology, that can be shared and evolve based on pre-existing shared properties.
The initial ontologies are grounded on property names, and property value names. The prop-
erties represent observable features of objects that help distinguishing between them, and their
grounding is based on the shared ability of agents to observe those feature values, and the con-
vention of using the same names. Concepts are formed as constraints on property values, they
are created by agents while observing objects from the environment based on already existing
concepts, and shared between agents. Thus, agents evolve their initial ontologies (in terms of
new concepts) while interacting.





4
Experiments

We conduct several experiments to show how the proposed game can be used for refining agent
ontologies trough communication.

4.1 Experiment Goals
The goal of this study is to experimentally explore how agents can evolve their ontologies
applying the protocol we defined in the previous chapter, according to cultural evolution exper-
iments methodology.

• We wish to demonstrate that this simple cultural evolution protocol can be successfully
adapted to explore how knowledge can evolve inside a population. We want to establish
if, through the defined operations through which agents alter their knowledge to reach
an agreement, ontologies always evolve. We wish to study the effect of sharing and
combining knowledge about classification through a population (agents learn new classes
from one another and combine them to create and transmit even more classes).

• We hypothesize that the population converges to a state with perpetually successful com-
munication regardless of the initial conditions of the experiment and the randomness of
each iteration.

• We want to explore the properties of this convergence state; Do the agents reach the same
ontologies in the end? Do they reach the same level of precision, or ability to discriminate
between objects?

• We also intend to discover conditions that influence ontology evolution. How is the out-
put influenced by the initial agent knowledge? Does the randomness of each interaction
influence the final output?

• We wish to study the scalability of our proposed game, exploring how the results are
influenced by the environment complexity (in terms of feature space size) and by popu-
lation size?

The next session presents the designed experimental settings required for studying the above
stated concerns.



4.2 Experimental Settings
The parameters of the evolution game defined above are:

• the number of agents in a population

• the number of features defined in the environment

• the number of feature values defined for each feature

We have chosen to generate the initial ontologies of the evolution game randomly, based on the
defined features. We have selected these parameters because they are easy to control and allow
us to observe the general behaviour, regardless of the initial knowledge by running the game
multiple times with different initial knowledge each time, and averaging over the results. Other
parameters could be the heterogeneity of the initial ontologies, size of initial ontologies (number
of categories), average degree of precision (generality/concreteness), number of feature values
used in classification etc.

Based on these parameters, the initial settings of every game, as well as the settings of every
round in a game, is randomized: At the beginning of a game, ontologies are initialized from
a randomly generated subset of all the possible categories, where the probability of having
each category is equally distributed. In order to have incomplete initial ontologies, we have
established that the maximum size of this subset is ∏

n
i=1 |Fi| (the product of the sizes of all

feature values for all features), and the minimum subset contains only Object category.

Algorithm 1 Initialize ontologies randomly
1: var initial categories limit = size(F1)*...*size(F2)
2: for for i = 1, i++, while i < initial categories limit do
3: Create category C
4: Initialize set of restrictions for C with category Object
5: for each feature Fk do
6: randomly decide to use Fk or not
7: if use Fk then
8: randomly select Fk feature’s value Fk= f m

k
9: add Fk= f m

k to the set of restrictions on C
10: end if
11: define C as the conjunction of the restrictions set
12: end for
13: end for

• In each game round, the two distinct interacting agents are randomly selected, each agent
in the population having the same probability of being selected first or second.

• The topic object of each round is randomly generated from the environment, with each
feature value being equiprobable.

The game can consist in any number of rounds. We are interested in playing as many game
rounds as necessary to observe ontologies evolve until the population reaches a stable state
from which their ontologies no longer evolve (regardless the object they encounter from the
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initially established environment, or agent they interact with from the initially established pop-
ulation) and communication is always successful (the success rate remains always ascending).

We are interested in answering the following main questions regarding the evolution of
agent ontologies, from the initial state to the stable state: Does the defined experimental set-up
lead to ontology evolution, regardless of the variable parameters and settings? How is evolution
influenced by the parameters and variable settings defined above?

In order to respond to the previously defined research questions, we run experiments where
we make these parameters and the initial conditions of the game vary, and observe the output.
We have several experiments in which, for a certain parameter configuration, we run the game
10 times, generating new initial knowledge at the beginning of each game. The results are
averaged over the 10 runs. The parameter configurations are the following: [3 agents, 1 feature
x 2 values], [3 agents, 1 feature x 5 values], [3 agents, 2 features x 2 values], [3 agents, 2
features x 5 values], [3 agents, 4 features, 2x2+2x3 values], [4 agents, 2 features x 2 values], [5
agents, 2 feature x 2 values], [5 agents, 3 features x 2 values].

4.3 Experimental Results and Analysis

4.3.1 Convergence to the Stable State
In all the experiments we conducted, we observed that regardless of the controllable parame-
ters and the randomness of the game (random initial ontologies, randomly selected objects and
agents in each round), the population always converges to a stable state in which communica-
tion is always successful (from that point in time, success rate remains ascending) and agents
no longer increase their number of categories. The stabilisation of the success rate sometimes
occurs before reaching state stable state, in cases when ontologies continue to evolve trough
intersection, but can no longer evolve trough adoption.

We show these characteristics in Figure 4.1, where we can see the success rates, respectively
the average number of categories per agent, in an experiment with 10 differently initialized
games, based on the same features. After less than 150 game rounds, the average number of
categories stabilizes for each game. Also, after less than 150 rounds, the success rate remains
ascending and asymptotically converges to 100%.

We see here that success rate evolution starts with the value 100%, as the first round of any
game is always a success: an agent needs to intersect at least two times with another, to observe
the other has a more precise classification.

The stabilization of the success rate coincides with the stabilization of number of categories
adopted from other agents, but the categories created by intersection may evolve afterwards.
We establish that the stable state is reached only after agents cannot evolve their ontologies,
either by adoption or by intersection.

4.3.2 Does ontology evolution occur?
In this section we report on experiments that study the conditions of ontology evolution for the
established protocol.

• Do agents always increase their number of categories? If not, which are these cases?

• What characterizes the output ontologies and the stable state?
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Figure 4.1: 10 randomly initialized games, their success rates and their average number of
categories/agent [3 agents, 2 features x 2 feature values]

• What are the environment changes that cause evolution to continue after a stable state?

Ontologies do not always evolve

As we saw in the experiments we conducted, in most cases, agents evolve their ontologies by
playing the defined game. They do so by creating intersection categories of existing ones
from their ontologies and adopting categories from other agents.

On average, evolving by creating intersection classes occurs faster than learning categories
from other agents, especially in the first few rounds, as it only requires agents to encounter
objects that belong to more than one most specific class in their ontology, whereas adopting
categories depends on the rest of population and requires encountering objects related to pre-
vious classifications of the same agents, which are less frequent (Figure 4.1, Figure 4.3, Fig-
ure 4.5). The two operations boost each other, a new adopted category creates new intersection
possibilities, and a new classification with a most specific category created by intersection can
signal the interlocutor that the current agent has a more precise classification, thus leading to
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adoption.
Interestingly, there are cases in which the population does not evolve, all of them being

conditioned by the fact that the agents cannot create any new categories by intersection:

1. when all agents have equivalent initial ontologies that cannot lead to intersection. For ex-
ample, all the agents in the population have the initial ontology composed of all objects,
all white objects, all black objects, all white square objects.

2. when all agents are equally able to distinguish between all the possible objects, and their
categories cannot lead to intersection. For example: Pascal’s ontology is composed of
Objet, defined as all objects and Blanc all white objects.

• Mary’s ontology is composed of Object, defined as all objects and Black, defined
as all black objects.

• Mary’s ontology is composed of Object, defined as all objects, Black, defined as all
black objects, and White, defined as all white objects.

In both cases defined above, for an environment containing only black and white objects,
both Mary and Pascal are capable of differentiating between them. In both cases, Pascal
will classify white objects as Blanc, and black objects as Object. Mary will always
classify black objects as Black and white objects as Object in the first case, respectively
White in the second case. In any case, the agents will always use the same corresponding
labels.

Environment evolution enables ontology evolution

In the second example above, the population composed of the two agent ontologies will not
evolve in the current environment that contains only black and white objects.

Let’s introduce an object of color red. As they have not seen this colour before, agents do
not use red value in their classification and do not have any category for it, so they both classify
it as Object. Pascal would remember that, when he classified something as Object before, Mary
has seen it as Black, which will lead to adopting a new category.

We have shown that if a new colour feature value is introduced in an environment, that
the agents with stable ontologies did not have knowledge about, they are able to learn more
categories from one another.

Different interactions result in different knowledge

We hypothesize that the output of the game depends on the order in which agents interact and
the objects they observe. We have conducted an experiment with 4 agents and a feature space
of 2 features with 5 values each. In this experiment, we generate the initial agent knowledge
once, and run 10 games with the same initial knowledge. The resulted ontologies in the stable
states differ from game to game.

As we see in Table 4.1, the final number of categories reached in the stable state varies
from game to game with a significant variance value. We can conclude that the randomness of
each interaction influences the evolution, agents obtaining different ontologies if they encounter
agents and objects in a different order.

The following example explains the four possible outputs for the same initial ontologies:
Mary’s ontology contains concepts Object, Black and White,Pascal’s ontology contains Objet,



total number of categories in stable state
agent variance number of categories in each game

Agent1 3.12 32 32 34 35 31 36 36 33 33 35
Agent2 6.54 36 33 36 36 32 36 31 34 29 36
Agent3 4.9 39 32 36 36 29 33 33 32 33 33

Table 4.1: number of categories agents obtained in 10 games run with the same initial ontolo-
gies, [3 agents, 2 features x 5 values]

Blanc, and Hans’s ontology contains Objekt. They interact in an environment that contains
only black and white coloured objects.

• 1. in the first round, Hans and Pascal observe a white object, Hans sees it as Objekt
and Pascal as Blanc.

2. in the second round, they encounter a black object. Pascal tells Hans that it is Objet,
and Hans, who sees it again as Objekt, acknowledges that Pascal makes a difference
between the two objects and adopts Hans’s categories. Hans’s ontology becomes
Objekt, Blanc from Pascal.

Mary’s ontology contains all the possible categories, and cannot evolve any more. Pas-
cal’s and Hans’s ontologies are equivalent, and cannot evolve by intersection. Pascal and
Hans cannot learn categories from Mary, because they are both able to distinguish be-
tween black (Objet, Objekt, Black) and white (Blanc, Blanc from Pascal, White) objects.
Thus, the agents have reached the stable state.

• 1. a white object is classified by Hans as Objekt and by Mary as White

2. a black object is classified by Hans as Objekt and by Mary as Black. Hans observes
that Mary can distinguish between objects when he cannot, and adopts Mary’s
classes.

Hans’s ontology becomes Objekt, White from Mary and Black from Mary, equivalent to
Mary’s. Pascal’s ontology cannot evolve anymore, as explained in the case above, thus
agents have reached the stable state.

• 1. Hans classifies a white object as Objekt, and Pascal as Blanc

2. Hans then classifies a white object as Object, and Mary as Black.

3. Hans interacts with Pascal again about a black object, that he sees a Objekt and
Pascal as Objet. Hans thus whishes to adopt Pascal’s categories Blanc and Objet,
and his ontologies becomes Objekt, Blanc from Pascal.

4. Hans talks to Mary again about a black object, that he classifies as Objekt and Mary
as Black. Hans remembers Mary’s White from their previous interaction, for his
same category Objekt, and adopts it.

The output ontologies are equivalent to the case above, Hans’s being Objekt, Blanc from Pascal
and Black from Mary.

• In this last case, it is interesting to observe how changes propagate through the popula-
tion:
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1. a black object is seen by Pascal as Objet and Hans as Objekt

2. Hans then interacts with Mary, classifying a black object and then a white object,
like in the second example. Hans’s ontology becomes Objekt, White from Mary
and Black from Mary

3. Pascal interacts with Hans again, about a black object. Because Hans has evolved,
he now classifies it as Black from Mary. Pascal remembers his different classifica-
tion from past, Objekt, and thinks that Hans can differentiate between the two black
objects that he himself considers Objet. This way, Pascal evolves by trying to adopt
Hans’s categories Objet and Black from Mary. His output ontology becomes Objet,
Blanc, Black from Mary and the agents have reached a stable state.

One agent learns indirectly from another using an interlocutor: Pascal cannot learn
new categories from Mary, as they are both able to distinguish between black and
white object; Pascal learns the more specific category for black objects from Hans,
who learned it from Mary.

Agents do not learn all the categories from each other

In the stable state, the agents did not necessarily have exchanged all their knowledge, their
resulting ontologies being different in most of the cases. This is due to the fact that agents do
not learn new classes, once all of them are able to discriminate between objects, even if some
agents classifications may be more precise than others, as previously explained.

As we see in Tables 4.2 and 4.1 which display data from the same experiment, three on-
tologies that initially share 2 categories will result in ontologies of different sizes, but which
share a very large percentage of categories.

number of categories the three agents have in common
initial state stable state

2 32 27 34 35 23 33 28 28 26 32

Table 4.2: number of categories agents share over 10 games run with the same initial ontologies,
[3 agents, 2 features x 5 values]

4.3.3 Influence of the parameters on ontology evolution

We suspect that by increasing the size of the problem (population size, feature space size) the
game will generally require more rounds to converge to a stable state, as the probability of en-
countering the combination of agent pair and object that would lead to learning new categories
decreases. The time required to converge depends also on the initial agent knowledge, and
on the order of the random interactions. We conducted experiments varying these parameters
(number of agents, number of features, number of feature values per feature), regardless initial
agent knowledge.



time to reach stable state
population size avg min max time to reach stable state for each game

3 58.5 32 103 32 69 40 65 53 44 50 93 39 103
4 94 15 161 95 161 155 15 117 113 48 52 96 88
5 226 71 475 406 288 475 103 190 71 95 288 196 149

Table 4.3: Time required to reach stable state (avegarge, minimum and maximum number of
rounds) in differently initialized games with 3, 4 and 5 agents, on the same feature space (2
features x 2 values)

Population size

We conducted 3 experiments with 3, for and 5 agents where, for the same feature space (2
features x 2 feature values), we have played 10 games, each initialized randomly (so initial
agent knowledge does not coincide from game to game).

The number of rounds required to converge varied largely from game to game, and the
interval between minimum and maximum overlap between the three experiments, because it is
highly influenced by the initial knowledge and randomness of each interaction. Even so, we
can see in Table 4.3 that, on average, the number of rounds required for reaching the stable
state increases with the population size.

This can be explained by the fact that, in order to learn categories by adoption, one agent
needs to interact with a certain interlocutor and the probability of finding that interlocutor
decreases with the increase of population size. One might expect adoption to occur at a much
lower pace than intersection, with the increase of population size. This is not necessarily true,
because the adoption of a new category creates possibilities for intersection, both the methods
having a similar pace, as we see in Figure 4.2.

Feature Space size

The feature space determines the possible number of categories an ontology can have, the
diversity of the initial ontologies and the diversity of the environment. Thus, we expect a larger
number of categories to be learned in experiments with a higher feature size, but at a slower
pace, as the probability of encountering an object that would lead to learning decreases.

We have conducted experiments in which for a population of 3 agent, we vary the feature
space size, increasing both the number of features, and the number of values per feature.

Increasing Feature Value size If we compare the results in Figure 4.1 where we defined
2 features with 2 feature values each, to Figure 4.3 where we increased the number of values
per feature to 5, we can see that it takes 3 agents much longer to reach full success and to
stabilize their ontologies. On average, the generated initial ontologies are larger in size due to
the experiment settings. The average number of learned categories, both by intersection and
adoption, are much larger, as detailed in Figure 4.4.

Increasing Feature size We have increased the feature space even more (4 feature, 2 of
them with 2 and the others with 3 values), the results being shown in Figure 4.5. We also
observe that the average and maximum number of categories an agent obtain in the 10 games
are far lower than in games with a smaller features space. In 4.1 the total number of possible
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Legend: red= percentage of categories learned by intersection, green= percentage of
categories learned by adoption

Figure 4.2: Percentage of the total number of categories of an agent, learned by intersection or
adoption, averaged over 10 games played by 3, 4, respectively 5 agents
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Legend: blue = total number of categories,dotted blue=max number of categories, dotted
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categories created by intersection, green = number of categories adopted from other agents

Figure 4.3: 10 randomly initialized games, their success rates and their average number of
categories/agent [3 agents, 2 features x 5 feature values]

categories (∏ i = 1n(|Fi|+1)) is reached 3 times, in Figure 4.3 it is reached 2 times, and here
it is never reached. The higher the feature space complexity, the lower the probability that the
initial ontologies and the random interactions will have a configuration favorable for obtaining
all the possible classes for an agent, before reaching the stable state.
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Figure 4.4: number of learned classes in 2 experiments - 10 randomly initialized games with 3
agents each - first experiment [2 features x 2 values], second experiment [2 features x 5 values]
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Figure 4.5: 10 randomly initialized games, their success rates and their average number of
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5
Conclusions

5.1 Contributions and Achievements
We have reached our main goal, showing that agents can refine the classification precision of
their ontologies while trying to improve communication. We have designed a simple cultural
evolution protocol in which agents communicate about objects in the environment, invent new
categories and adopt them from other agents in order to improve communication.

Conducting experiments with this protocol, we have shown that the population of agents
is able to converge every time to a state of full communication success, where agents can
no longer refine their classification precision. We have shown that indeed the agents have
increased classification precision, acquiring new categories, and transmitting knowledge trough
the population. The more or less precise adopted categories are combined to create more precise
ones.

The resulting ontologies in this stable state are highly influenced by the randomness of
game iterations, an initial ontology evolving differently after different games. Also, the popu-
lation interacting does not necessarily reach the same ontology in the stable state, the resulting
ontology depending on the initial knowledge and on the agent interactions.

5.2 Perspectives
Many more experiments can be performed using the proposed ontology evolution game, in
order to investigate other aspects of knowledge. The game itself can be modified to allow a
more complex representation of knowledge, or more complex interactions.

The current experiments have been run in a stable environment with equiprobable objects
and agents. In the stable state, agents have already encountered all possible objects in the
environment and agents in the population. Experiments need to be run to show how knowledge
adapts to the evolution of the environment, by introducing new agents or objects with new
feature values once the population has reached the stable state. We hypothesize that the agents
will be able to learn new categories, until reaching a new stable state.

Knowledge about the environment is currently simplified, using only categories constructed
as conjunction constraints on feature values. disjunction and negation can be introduced to
obtain more complex ontologies.

The protocol of this game is based on the convention of having knowledge about the same
features and using the same names for them. The game would become more complex if, instead



of this convention, agents would have different knowledge about features, and use alignments
between properties and between property values, that may or may not be correct. The align-
ments would have to be corrected dynamically trough communication, combining the game
with [1].

The communication modality in the protocol can also be modified: the current adoption
operation involves the communication of complete class definitions. We can experiment with
reducing the level of information agents can communicate, and propose i) communicating
class descriptions, deduced from the class definitions, that do not completely define the class
ii) guessing the other agent’s class definitions from the classification history. The two methods
require the adopting agent to add a new class, guessing its definition, that may not correspond
to the interlocutor’s desired class.
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