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Abstract. Existing metrics for evaluating complex ontology matching
systems often fail to adequately capture the intricacies of (m:n) corre-
spondences. This limitation results in partial or biased alignment quality
assessments. This paper introduces a novel metric specifically tailored for
complex ontology matching, extending traditional evaluation frameworks
by incorporating subgraph similarity measures to ensure structural con-
sistency with reference alignments. It utilizes a tree similarity-based ap-
proach, ensuring robustness against common issues such as order variance
and detecting incorrect correspondences while adhering to key evaluation
properties like completeness and correctness. Empirical experiments con-
ducted on the OAEI complex track datasets demonstrate the superior
adaptability of the metric in distinguishing correct structural correspon-
dences compared to conventional and instance-based evaluation methods.

Keywords: Complex ontology matching · evaluation · tree similarity-
based approach.

1 Introduction

Ontology matching (and more broadly, knowledge graph matching) aims to en-
able interoperability between knowledge expressed in different schemes. While
the field has reached some maturity, most of the matching approaches still focus
on generating simple (1:1) correspondences (i.e., those linking one single entity of
a source ontology to one single entity of a target ontology, as Authors ≡Writer).
However, this type of correspondence is not expressive enough to fully cover dif-
ferent heterogeneities (lexical, semantic, conceptual, granularity). More expres-
siveness is hence fundamental and complex correspondences (i.e., those involv-
ing logical constructors or transformation functions, as e.g., Accepted_Paper ≡
Paper ⊓ ∃ hasDecision.Acceptance). The need for more expressiveness has been
recognized across various fields, such as cultural heritage [5], agronomic [10], or
still biomedical [8, 4].
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A still open issue, however, is the evaluation of complex correspondences.
Existing evaluation metrics do not fully account for structural aspects, only
partly exploit reference alignment, or are not always feasible. Although well-
known benchmarks contain reference alignments (the result of an expert-driven
curation process), no metric comprehensively compares complex correspondences
from the reference with those generated by matchers. Current methods rely
on manual comparison – as seen in the OAEI Taxon and Complex Conference
datasets – or use partial metrics like Entity or Relationship Identification 4,
as in the GeoLink benchmark. Concerning the metrics that rely on the use of
common instances (A-Box data) [13], such an approach is not always feasible, as
ontologies may not be exhaustively populated or may lack an A-Box altogether.

This paper introduces a novel metric specifically designed to evaluate com-
plex ontology alignments based on a reference alignment (gold standard) while
capturing their underlying semantics. Building on the evaluation framework pro-
posed in [2], this metric addresses the shortcomings of existing approaches by
fully considering the structural intricacies of (m:n) correspondences. By focusing
on structural alignment, it offers a more comprehensive and accurate compari-
son, filling this gap in current methods. The metric assigns a higher score to the
correspondence that is structurally closer to the reference, ensuring an accurate
evaluation.

The structure of this paper is organized as follows. Section 2 introduces the
theoretical foundations of the proposed metric, describing its desired properties,
method, and algorithms. Section 3 evaluates the proposed approach through ex-
periments, comparing its performance with state-of-the-art metrics. Section 4
provides a review of related work and existing evaluation metrics for complex
ontology matching, highlighting their limitations. Finally, Section 5 summarizes
the contributions of this study and outlines potential directions for future re-
search.

2 Proposal

The work here is based on the work from [2]. Originally, precision and recall do
not account for the proximity of alignments to the expected result, as they only
compare exact (1:1) correspondences. This can lead to different alignments re-
ceiving the same score despite the varying quality. In that work, it is proposed to
use a relaxation of the metrics by first generalizing those metrics by comparing
instead the similarity between sets of correspondences and using correspondence
proximity metrics, such as how distant entities are from each other, to create a
fuzzy metric proximity metric. For that proposal, it is required that the same
entity not appear twice in the alignment. For the evaluation of complex align-
ments, this restriction is incompatible, since the complex correspondences are
composed of subgraphs instead of a single entity, where the same entity can
appear multiple times in different subgraphs. To solve those constraints, in this

4 https://oaei.ontologymatching.org/2020/results/complex/geolink/index.html
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work is proposed to use the tree edit distance to compute the correspondence
proximity and use an assignment algorithm to enable the same subgraphs to ap-
pear multiple times in the alignment. The next sections describe the theoretical
foundation of the proposed metric along with its algorithmic implementation.

2.1 Foundations

Complex ontology matching involves identifying and formalizing expressive cor-
respondences between entities in different ontologies. An alignment is defined as
a set A = {(e1, e2) | e1 ∈ O1, e2 ∈ O2}, where e1 and e2 are entity subgraphs
from the source ontology O1 and the target ontology O2, respectively. These
pairs, (e1, e2), represent correspondences between semantically related elements
in the two ontologies. Alignments are classified as simple when |e1| = |e2| = 1
(1:1) and complex when max(|e1|, |e2|) > 1 (m:n).

To evaluate the quality of an alignment, a similarity function f(A1, A2) →
[0, 1] is employed. This function measures the degree of similarity between a
proposed alignment A1 and a reference alignment Aref, which acts as the gold
standard. The function compares all the entity pairs (e1, e2) ∈ A1 against those
in Aref, quantifying how well the proposed alignment captures the intended cor-
respondences. The similarity score produced by f provides an objective metric
for evaluating the alignment’s adherence to the reference alignment, enabling
the measurement and ranking of the matcher’s performance.

2.2 Desired Properties of the Proposed Metric

Given the nature of complex alignments, a metric designed to evaluate them
must comply with specific properties to ensure comprehensive assessment. For
instance, a matcher that produces multiple correspondences, including both cor-
rect and incorrect ones, should be assigned a lower performance score compared
to a matcher that outputs fewer but entirely correct correspondences. Based
on [2], this work introduces a set of properties specifically tailored for complex
matching. Unlike the original framework, which assumes that an entity can ap-
pear in only one correspondence, our work allows for the same entity to appear
multiple times across different correspondences. This distinction acknowledges
the fact that various logical combinations, represented as subgraphs that either
include the same entity multiple times or involve distinct subgraphs containing
the same entity, can convey different semantic meanings.

Considering these considerations, the desired properties of a metric for com-
plex matching, designed to compare two sets of alignments, are as follows:

Definition 1 (Identity). f(A1, A2) = 1 when the proposed alignment A1 is
identical to the reference alignment A2. This ensures that the similarity function
assigns the highest score when the alignments perfectly match.

Definition 2 (Order Invariance). Since alignments are sets of entity corre-
spondences, the order in which they are listed should not affect the similarity
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score. Therefore, f(A1, A2) = f(An, A2), where An is a list containing the same
correspondences as A1 but in a different order. This reflects that the metric com-
pares the sets of correspondences, not their sequence. In this work, the alignments
are considered to be presented as unordered lists.

Definition 3 (Error Penalization). The similarity score should decrease if
a wrong correspondence is added to the proposed alignment. Specifically, it is
expected that f(An, A2) < f(A1, A2), where An is A1 with an additional incorrect
correspondence or a redundant copy of an already correct correspondence.

Definition 4 (Incompletness Penalization). The similarity score should also
decrease if correct correspondence is removed from the proposed alignment. Specif-
ically, f(An, A2) < f(A1, A2), where An is A1 without a correct correspondence.
This property ensures that missing correspondences result in a lower score.

Definition 5 (Sensitivity to Entity Modification). Modifying an entity
pair in the alignment by adding, deleting, or replacing one of its elements should
also decrease the similarity score. Considering, f(An, A2) < f(A1, A2), where An

is A1 with one entity modified such that the modified pair (en, em) is different
from the corresponding pair (e1, e2) in A2. This property ensures that the metric
is sensitive to changes in the specific entities or relationships in the alignment.

2.3 Evaluation Algorithm

An evaluation algorithm is proposed to address the desired properties of the
metric in the context of complex ontology alignment. This proposed algorithm
receives as input an alignment file in the EDOAL format [3]. This format is
commonly used to store complex alignment results between ontologies as it de-
scribes relational entities that can combine multiple entities. It is a subset of
RDF/XML and its basic structure is a tree of correspondences containing cells
that describe the correspondence between edoal:entity1 tag from the source
and edoal:entity2 tag from the target with a specific confidence and relation.
This algorithm does not consider the type of relation or the degree of confidence
by the matcher. One example of a correspondence expressed in EDOAL is given
below:

<Alignment>
<map>

<Cell rdf:about="Reviewer_merge">
<entity1>

<edoal:Class>
<edoal:or rdf:parseType="Collection">

<edoal:Class rdf:about="&cmt;Reviewer" />
<edoal:Class rdf:about="&cmt;ExternalReviewer" />

</edoal:or>
</edoal:Class>

</entity1>
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<entity2>
<edoal:Class rdf:about="&conference;Reviewer" />

</entity2>
<measure rdf:datatype="&xsd;float">1.0</measure>
<relation>Equivalence</relation>

</Cell>
</map>
...

</Alignment>

The choice of a tree-based algorithm is driven by the fact that EDOAL is
inherently tree-structured. Although a tree is a substructure of a graph, and both
graph and tree similarity algorithms could theoretically yield similar results,
the tree-based approach is more natural and efficient here. While many tree
and class-based similarity algorithms exist, their use in automatically evaluating
complex correspondences remains unexplored.

The algorithm used to compute the TED in this work is described in [15].
In this case, the children tree is sorted as proposed in [16] since the order of the
children in set operation nodes, like an intersection (owl:intersectionOf), must
not impact the results. The costs used for the TED algorithm are: insertion
and deletion costs are 1 and the update cost is 2. Those costs ensure that the
similarity computed between trees composed of single nodes but with different
entities is 0.

The proposed evaluation is computed by the Algorithm 1. The first step is
loading the correspondences from the matcher output and the reference align-
ment in lines 2 to 3 of the Algorithm. Then the correspondences are classified
into simple and complex based on the number of entities in each subtree in lines
5 to 6. Then the empty score matrix is initialized in line 7.

For each pair in the cartesian product of all correspondences between the
evaluated alignment and the reference alignments, a similarity score is com-
puted and filled into the score matrix in lines 8-14. The similarity between all
correspondence pairs between A1 and A2 is computed as:

SLi,j =
tree_sim(Q1i, R1j) + tree_sim(Q2i, R2j)

2
,

∀i ∈ {1, . . . , |A1|}, j ∈ {1, . . . , |A2|} (1)

That computation results in a matrix SL where the lines are the correspon-
dence pairs (Q1, Q2)i from the source and the columns are the correspondence
pairs (R1, R2) from the reference alignment. Now applying the assignment algo-
rithm described in Algorithm 2.3 in line 15, a set of corresponding maps between
A1 and A2 is retrieved that maximizes the sum of the corresponding pairs’ sim-
ilarities. In lines 17 and 18, the resulting assignment is classified as simple and
complex into four assignments Tsimple, Tcomplex, Qsimple, Qcomplex. Two of them
are simple assignments where the source Tsimple and target Qsimple contain
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Algorithm 1 Evaluate EDOAL (evaluate_edoal)
1: function EvaluateEDOAL(p1, p2, w = 0.5, sim_func = tree_sim)
2: mapss ← LoadAlignment(p1)
3: mapst ← LoadAlignment(p2)
4: Divide alignments into simple and complex correspondences for mapss, mapst:
5: Ssource, Csource ← splitSimpleComplex(mapss)
6: Starget, Ctarget ← splitSimpleComplex(mapst)
7: scores ← Empty list for similarity scores
8: for s1, s2 in mapss do
9: ms ← Empty list

10: for t1, t2 in mapst do
11: ms.append((sim_func(s1, t1) + sim_func(s2, t2)) / 2)
12: end for
13: scores.append(ms)
14: end for
15: assigns ← MaximizeAssign(scores)
16: Separate assignments into simple and complex:
17: Tsimple, Tcomplex ← getSourceAssignments(assigns)
18: Qsimple, Qcomplex ← getTargetAssignments(assigns)
19: recall ← recallavg
20: precision ← precavg
21: fmeasure ← 2 · recall · precision/(recall+ precision)
22: return soft_precision, soft_recall, soft_fmeasure
23: end function

simple correspondences, and the other two Tcomplex and Qcomplex contain the
complex assignments. Those different assignments are classified to perform dif-
ferent evaluations based on the number of simple or complex correspondences.
After that, it is possible to compute average precision and average recall from
the resulting set in lines 19 to 21.

To evaluate the performance of the matcher considering only the simple cor-
respondences or the complex ones, a weight w is introduced. This weight ranges
from 0 to 1, and when it is 0, only the simple correspondences are considered
in the results, and when it’s 1, only the complex correspondences are consid-
ered. The default value of 0.5 is used to evaluate both correspondence types.
To perform this evaluation, assuming that Asource = Ssource ∪Csource is the set
of correspondences in source and Ssource is the set of simple correspondences
in source and Csource is the set of complex correspondences in source. For the
target, the set Atarget = Starget ∪ Ctarget is assigned respectively. The weighted
average precision is computed as:

precavg =
(1− w) ·

∑
s∈Tsimple

s+ w ·
∑

c∈Tcomplex
c

(1− w) · |Ssource|+ w · |Csource|
(2)

And the average recall:
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Algorithm 2 Maximum Assignment (max_assign)
1: function MaxAssign(m)
2: preferences← sorted_dict(m)▷ Sort preferences for each pair
3: unassigned← List of unassigned pairs
4: assigned← {}
5: while unassigned is not empty do
6: pair ← unassigned.pop(), pair_pref ← preferences[pair]
7: if len(pair_pref) = 0 then
8: continue
9: end if

10: next_pref ← pair_pref.pop(0) ▷ Highest remaining preference
11: if next_pref [0] is in assigned then
12: if next_pref [1] > assigned[next_pref [0]][1] then ▷ Better match
13: unassigned.append(assigned[next_pref[0]][0]) ▷ Free current
14: assigned[next_pref [0]]← (pair, next_pref [1])
15: else
16: unassigned.append(pair) ▷ Remain free
17: end if
18: else
19: assigned[next_pref [0]]← (pair, next_pref [1]) ▷ Assign the pair
20: end if
21: end while
22: return assigned
23: end function

recallavg =
(1− w) ·

∑
s∈Qsimple

s+ w ·
∑

c∈Qcomplex
c

(1− w) · |Starget|+ w · |Ctarget|
(3)

Also, an aggregated metric such as f-measure can be computed with the
averaged precision and recall:

f1 =
2 · precavg · recallavg
precavg + recallavg

, (precavg + recallavg) ̸= 0 (4)

The proposed evaluation method in this paper is implemented in Python and
is available at GitLab5.

2.4 Properties Verification

In this section, the arguments for the properties of the proposed evaluation
method are stated.

Lemma 1 (Identity). Given alignments A1 and A2, if A1 = A2, then the
similarity function f(A1, A2) = 1.
5 https://gitlab.irit.fr/melodi/ontology-matching/complex/complex-reference-

evaluation



8 G. Sousa et al.

Proof. Assume that A1 = A2. From the definition of the similarity metric,
f(A1, A2) is computed using the matrix sl of pairwise similarities. Since A1 = A2,
all entity pairs (m1,m2) compared in sl will yield tree_sim(m1,m2) = 1 when
m1 = m2 and lower similarity for all other pairs. The assignment algorithm
maximize_assign will therefore select matches that maximize the total simi-
larity, which will select the equal pairs. Since all selected pairs have similarity 1,
precision and recall are 1, resulting in f(A1, A2) = 1.

Lemma 2 (Order Invariance). The similarity function f(A1, A2) is invariant
to the order of entity pairs in A1. Specifically, if An is a reordering of A1, then
f(A1, A2) = f(An, A2).

Proof. Assume An is a reordering of A1. Since all candidate pairs are iterated
from the similarity matrix sl, even if a candidate assignment starts at a lower
similarity, it will always be replaced by a higher similarity pair, leading to the
same sum of similarities. If two distinct pairs, containing different entities but
having the same similarity, are assigned in a different order, the total sum re-
mains unchanged. Consequently, the precision and recall values stay consistent,
regardless of the initial order.

Lemma 3 (Error Penalization). If an incorrect correspondence (e1, e2) /∈ A2

is added to A1 to form An, then f(An, A2) < f(A1, A2).

Proof. Assume An is a copy of A1 with an additional incorrect correspondence.
The similarity matrix sl will stay the same as f(A1, A1). However, the precision
value in this case will be lower, leading to a lower f-measure and then f(An, A1) <
f(A1, A1).

Lemma 4 (Incompletness Penalization). If a correct correspondence is re-
moved from A1 to form An, then f(An, A2) < f(A1, A2).

Proof. Assume An is A1 with one correct correspondence removed. This reduces
the number of high-similarity values in the matrix sl, resulting in a lower optimal
assignment score from maximize_assign. Consequently, recall and f -measure
decrease.

Lemma 5 (Sensitivity to Entity Modification). If an entity pair in A1 is
modified to form An, then f(An, A2) < f(A1, A2).

Proof. Assume An is A1 with one entity pair (e1, e2) replaced by (en, e2) such
that sim(en, e2) < sim(e1, e2). The modified pair will have a lower similarity
score, leading to reduced values in sl. This decreases the total sum of similarity
scores from maximize_assign, lowering precision, recall, and f -measure.

2.5 Specific Case Exploration

To illustrate the main differences between the proposed metrics and the two
common approaches, an example is drawn. As stated above, instance-based and
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Entity Identification are currently used in the OAEI complex track. However,
as instance-based metrics act as a proxy metric by measuring the amount of
common instances returned by the correspondences, that metric is not directly
comparable to the others. So, to illustrate the difference between Entity Identi-
fication and the proposed metric, consider the following example:

Matcher 1:
IntersectionOf( InverseOf(isWrittenBy), isAuthorOf ) = writePaper
Matcher 2:
IntersectionOf(isWrittenBy, InverseOf(isAuthorOf) ) = writePaper
Matcher 3:
UnionOf(isWrittenBy, InverseOf(isAuthorOf)) = writePaper
Reference alignment:
IntersectionOf( InverseOf(isWrittenBy), isAuthorOf ) = writePaper

In the OAEI results page of the year 2020 6 (the one with the most differ-
ent matchers participating), it remains unclear whether the Entity Identification
task accounts for OWL predicates. In the example, if no OWL predicates are
considered, since isWrittenBy and isAuthorOf appear both in the reference on
the source side and writePaper on the target, all matchers score 1.0 (the maxi-
mum score considering the formula found entities / total entities). Since in the
example, Matcher 1 is the exact copy of the reference alignment and the others
have modifications, the ranking of the matchers doesn’t reflect the desired evalu-
ation. If the predicates are considered, the scores vary: In Matcher 1, all entities
are present, so the score is 1.0. In Matcher 2, all entities are present but in a
different order, yet the score remains 1.0 because Entity Identification doesn’t
consider the order. In Matcher 3, the inverse appears in the wrong property and,
instead of Intersection, a Union is used, so this matcher scores 0.75.

In contrast, our proposed metric uses tree edit distances to measure the
similarity between the generated correspondences and the reference alignment.
In Matcher 1, all entities are present and in the same order, so the score is 1.0. In
Matcher 2, the cost is 2 over 4 entities, so the score is 0.5. And in Matcher 3, the
cost is 3 over 4 entities, reaching a score of 0.25. Thus, the proposed metric more
effectively ranks correspondences based on their compliance with the reference
alignment.

Another example can be considering the comparison for the entity pair il-
lustrated in Figure 1. Using the proposed metric, four edits are required to
transform the tree structure A into that of the tree B. With the total size of the
compared trees being 12, the similarity score for this entity pair is computed as
1− 4

12 = 0.33.
By contrast, the Entity Identification process used, for example, in the pop-

ulated conference evaluation in the complex track in OAEI 2020, only considers
ontology-related entities, filtering the structural entities. In this case, the simi-
larity of those trees will be 0. This evaluation presents an optimistic view of the
task, simplifying the task for matchers by ignoring structural requirements; as
6 https://oaei.ontologymatching.org/2020/results/complex/geolink/index.html
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Fig. 1. Example of the similarity comparison applied in the proposed metric. Entities
shaded in green are structural nodes while those in blue are ontology-specific nodes.
Entities highlighted in green are correspondents, while entities highlighted in red are
replaced.

long as the correct entities are included in the set, the matcher can achieve a
higher score without adhering to the proper logical operators that define part of
the tree structure.

Based on these observations, it is possible to outline the properties of each
metric concerning the proposed definitions for a robust metric for complex
matching using reference alignments. These properties are summarized in Table
1. It is possible to see that the proposed metric follows all the proposed defini-
tions, while the relaxed-based metrics fail in property 5 and the Instance-based
metrics fail in property 3 and don’t apply to property 5.

Metric Identity Order Error Incompleteness Sensitivity to
Invariance Penalization Penalization Entity

Modification
Proposed ✓ ✓ ✓ ✓ ✓
Entity Identification ✓ ✓ ✓ ✓ X
Instance-based ✓ ✓ X ✓ -

Table 1. Evaluation of metrics based on adherence to properties defined for proper
evaluation of complex alignments. In the table, X marks when the metric doesn’t follow
the definition and - marks when the definition is not applied.
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3 Experiments and Discussion

In this section, the results of the most commonly used automatic evaluation
metrics are empirically compared. For this experiment, we analyzed the outputs
of matchers that participated in the 20207 OAEI complex track 8. In that eval-
uation, only Taxon was not included since no reference alignment is present for
this track. The matchers included in this analysis are AMLC, CANARD, and
AROA since those are the unique producing complex alignments in that year.

The evaluation metric proposed in this paper is compared with existing met-
rics. These include the instance-based evaluator introduced in [9], which is used
in the Populated Conference evaluation, and Entity Identification approach used
for the Geolink dataset and other datasets within the complex track [11], as well
as in related works [1].

To explore the impact of different types of correspondences, the proposed
metric was tested with weight values of w = 0, w = 0.5, and w = 1.0, representing
simple correspondences, complex correspondences, and a combination of both,
respectively. The results for the proposed metric are present in Table 2.

Not all matchers produced alignments for all datasets, and some only gen-
erated alignments in the simplified format designed for simple correspondences.
Since the proposed metrics are constructed specifically for dealing with EDOAL,
certain alignments were unsupported during the loading phase, or the parsed
structure resulted in zero scores across all metrics.

When comparing simple and complex evaluation scenarios, it is possible to
see that the matchers perform better in aligning simple entities but have lower
performance with complex correspondences. In contrast to the proposed met-
ric in this paper, the Entity Identification and recall evaluate the matchers in
some datasets with relatively higher performance, as expected. This is because
those metrics do not consider structural constraints. For example, in Populated
Geolink, CANARD reaches 0.26 f-measure in the balanced proposed metric but
gets 0.54 in the relaxed f-measure. But considering only complex alignments is
possible to see that in this case, CANARD gets 0.09 f-measure. It gets a higher
value in the relaxed metric since that metric ignores structural considerations,
leading to higher result values. The same case occurs with AROA, which gets
0.39 in the Proposed metric with w = 0.5 and 0.24 considering only complex
correspondences, but gets 0.60 in the relaxed f-measure. This highlights the im-
portance of evaluating a system’s ability to handle structural complexities (a key
capability of modern AI models like LLMs) that comparison similarities fail to
capture.

In the instance-based evaluation, which results are in the Populated Con-
ference dataset in Table 2. There were no results for the Geolink, Hydrography,
and Populated Enslaved dataset, as it lacks the Competency Question for Align-
ment (CQA) required for this evaluation. In the populated conference dataset,
CANARD outperformed AMLC relative to the instance-based evaluation, but in

7 This year was used in this experiment since in 2024 only one matcher was submitted.
8 https://oaei.ontologymatching.org/2020/results/complex/index.html
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Dataset Metric AMLC CANARD AROA

Conference

Proposed w=0.5 (Precision) 0.45 - -
Proposed w=0.5 (Recall) 0.19 - -
Proposed w=0.5 (F1) 0.26 - -
Proposed w=1 (Precision) 0.45 - -
Proposed w=1 (Recall) 0.65 - -
Proposed w=1 (F1) 0.51 - -
Precision (Manual) 0.31 - -
F-measure (Manual) 0.34 - -
Recall (Manual) 0.37 - -

Populated Conference

Proposed w=0.5 (Precision) 0.38 0.25 -
Proposed w=0.5 (Recall) 0.47 0.52 -
Proposed w=0.5 (F1) 0.40 0.33 -
Proposed w=0 (Precision) 0.69 0.60 -
Proposed w=0 (Recall) 0.46 0.55 -
Proposed w=0 (F1) 0.54 0.56 -
Proposed w=1 (Precision) 0.21 0.12 -
Proposed w=1 (Recall) 0.54 0.43 -
Proposed w=1 (F1) 0.27 0.17 -
Precision (Instance-based) 0.23-0.51 0.25-0.88 -
Coverage (Instance-based) 0.26-0.31 0.40-0.50 -

Hydrography

Proposed w=0.5 (Precision) 0.02 - -
Proposed w=0.5 (Recall) 0.01 - -
Proposed w=0.5 (F1) 0.01 - -
Proposed w=1 (Precision) 0.05 - -
Proposed w=1 (Recall) 0.06 - -
Proposed w=1 (F1) 0.06 - -
Relaxed Precision 0.45 - -
Relaxed F-measure 0.10 - -
Relaxed Recall 0.05 - -

Geolink
Relaxed Precision 0.50 - -
Relaxed F-measure 0.32 - -
Relaxed Recall 0.23 - -

Populated Geolink

Proposed w=0.5 (Precision) - 0.45 0.71
Proposed w=0.5 (Recall) - 0.18 0.27
Proposed w=0.5 (F1) - 0.26 0.39
Proposed w=0 (Precision) - 1.00 0.94
Proposed w=0 (Recall) - 0.78 0.82
Proposed w=0 (F1) - 0.88 0.87
Proposed w=1 (Precision) - 0.20 0.57
Proposed w=1 (Recall) - 0.06 0.16
Proposed w=1 (F1) - 0.09 0.24
Relaxed Precision 0.50 0.89 0.87
Relaxed F-measure 0.32 0.54 0.60
Relaxed Recall 0.23 0.39 0.46

Populated Enslaved

Proposed w=0.5 (Precision) 0.24 0.16 -
Proposed w=0.5 (Recall) 0.10 0.10 -
Proposed w=0.5 (F1) 0.14 0.12 -
Proposed w=0 (Precision) 0.24 0.18 -
Proposed w=0 (Recall) 0.47 0.50 -
Proposed w=0 (F1) 0.32 0.26 -
Proposed w=1 (Precision) 0.23 0.16 -
Proposed w=1 (Recall) 0.03 0.03 -
Proposed w=1 (F1) 0.06 0.05 -
Relaxed Precision 0.73 0.42 0.80
Relaxed F-measure 0.40 0.19 0.51
Relaxed Recall 0.28 0.13 0.38

Table 2. Comparison of metrics across different datasets and matchers. Results of
zero in all metrics in some datasets were omitted for brevity. Entity Identification is a
subprocess in Relaxed Precision and Recall for the results in this table.
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the proposed metric, AMLC has higher results than CANARD, showing that de-
pending on the metric, the ranking of matchers’ performance changes. However,
this evaluation does not distinguish between the number of simple and com-
plex correspondences returned, making it unclear whether higher results stem
from better handling of simple or complex cases. Incorporating this distinction
would enhance performance analysis and provide more granular insights into
the matchers’ capabilities, as was done in the proposed metric. Another charac-
teristic of the instance-based evaluator is that duplicating correspondences and
adding them to the alignment does not affect the results. This can lead to issues
where proposing multiple small modifications of the same correspondence will
not result in reduced precision.

Another observation is the higher resource consumption of instance-based
evaluations. These evaluations require CQAs as input for the source and tar-
get ontologies, along with CQAs for the related dataset, also with the system
outputs. However, precision evaluation does not require CQAs. In contrast, the
proposed metric only relies on the output alignment and reference alignment
without the need to load the datasets. While obtaining reference alignments can
be challenging, the proposed metric is compatible with six out of seven datasets
in the 2020 OAEI complex track, except for the Taxon dataset, which lacks a ref-
erence alignment. Instance-based metrics, on the other hand, can only evaluate
five of the seven datasets and fully analyze only two (populated_conference and
Taxon) due to the strict requirements of having both CQAs and instances. For
datasets like populated GeoLink, Hydrography, and populated Enslaved, only
precision evaluation is feasible. However, this evaluation can complement the
proposed one when no reference alignment is present in the dataset.

4 Related Work

In complex ontology matching (the reader can refer to [12] for a survey), man-
ual evaluation remains a technique used to assess matchers’ performance due
to the intricate nature of the correspondences involved [7, 6, 14]. Unlike simple
matching, where automated metrics like precision and recall can often provide
reliable assessments, complex matching requires deeper semantic understanding
and contextual interpretation that automated tools have difficulties achieving.
Human experts are typically involved in evaluating the alignments’ correctness,
completeness, and semantic coherence, particularly in scenarios where gold stan-
dards are unavailable or incomplete. This manual process is time-consuming and
subject to potential biases or inconsistencies.

To enable automatic evaluation of complex ontology matching, one of the
commonly used metrics is relaxed precision and recall [2]. These metrics aim to
provide flexibility by allowing partial matches between complex correspondences
rather than requiring exact equivalence. However, a significant limitation is that,
while being a general metric that can be extended, they do not define metrics
to measure the similarity between the subgraphs or structures involved in com-
plex correspondences. Consequently, relaxed precision and recall without the
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proper graph similarity score may fail to capture the full structural and seman-
tic fidelity of complex correspondences, limiting their effectiveness in assessing
overall alignment quality.

Other metrics for evaluating complex ontology alignments rely on set-based
computations, focusing on the overlap of common entities between the corre-
sponding elements as described in [9]. A common metric applied to the complex
matching case based on this principle is the measure of the number of correct
entities present in the correspondence, resembling the Jaccard similarity met-
ric. While these metrics are straightforward and computationally efficient, they
have limitations in representativity since they don’t consider the structural re-
lationships or semantic dependencies between the entities within the subgraphs
defined by the correspondences. This omission means that approaches capable of
correctly identifying those aggregation relations won’t have higher performance
than just identifying the composing entities.

Another approach to evaluating complex ontology alignments involves met-
rics based on Competency Questions for Alignment (CQAs) and instances [13].
CQAs are SPARQL queries written to describe the user needs in terms of align-
ment, and are often provided as input to the matchers in some datasets. In that
proposed evaluator, the quality of the alignment is assessed by comparing the
similarity between the CQAs and the rewritten alignments as SPARQL queries.
However, this method faces significant challenges, as CQAs are user-defined and
require manual creation, making the process time-intensive and dependent on
human expertise. Additionally, some metrics evaluate the alignment by measur-
ing the number of common instances retrieved by the rewritten queries. While
this can provide valuable insights, it has critical limitations: not all ontologies
contain instances, and even when instances exist, not all entities have associated
instances. As a result, these metrics fail to comprehensively evaluate all matched
concepts, leaving gaps in the assessment of alignment quality, since it may not
cover the whole ontology.

5 Conclusion

This paper introduced a novel metric to evaluate complex ontology alignments
that consider the structure of matched entities. While some metrics rely on the
use of common instances (A-Box data), such an approach is not always fea-
sible, as ontologies may not be exhaustively populated or may lack an A-Box
altogether. Our metric provides an alternative in these scenarios. In the OAEI
complex track, most datasets include reference alignments, but these are often
underexploited — either partially or evaluated manually. Unlike existing ap-
proaches, the proposed metric accounts for the structural and semantic relations
of (m:n) correspondences by using a tree similarity computation and ensuring
adherence to key evaluation properties for alignments written in EDOAL, such
as identity, order invariance, and sensitivity to correspondence modifications.
The empirical analysis demonstrated the metric’s capability to deliver insights
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into alignment quality compared to traditional and instance-based evaluation
methods.

The proposed metric outperforms alternatives in scenarios emphasizing struc-
tural evaluation, enabling a more accurate distinction between simple and com-
plex correspondences. It also addresses limitations in other methods, such as their
inability to comprehensively evaluate alignments that involve structural compo-
nents or their reliance on dataset-specific characteristics like instance availabil-
ity or predefined competency questions. This structural evaluation requires that
matchers built for the complex task produce the correct combination structure
for the entities. Now with LLMs that combination can be better produced, and
having suitable metrics can help the complex evaluation task follow the advance-
ments of techniques in this field. Also, a new evaluation technique can bring new
perspectives to the Complex track in OAEI evaluation and help bring more
participants.

However, challenges remain. The dependency on high-quality reference align-
ments can limit applicability in contexts where such alignments are unavailable
or prone to errors. Future work will explore approaches to mitigate these depen-
dencies, such as developing probabilistic models to assess alignment quality in
the absence of complete gold standards. Furthermore, refinement of the metric
to accommodate evolving ontology formats and emerging alignment needs will
ensure its continued relevance in advancing ontology matching research.
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