
Journal of Artificial Intelligence Research 83 (2025) 1-38 Submitted 12/2023; 12/2024; published 06/2025

The fixed-point semantics of relational concept analysis∗

Jérôme Euzenat Jerome.Euzenat@inria.fr
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

Associate editor: Ivan José Varzinczak
Abstract

Relational concept analysis (RCA) is an extension of formal concept analysis dealing
with several related formal contexts simultaneously. It can learn description logic theories
from data and has been used within various applications. However, RCA returns a single
family of concept lattices, though, when the data feature circular dependencies, other
solutions may be considered acceptable. The semantics of RCA, provided in an operational
way, does not shed light on this issue. This paper aims at defining precisely the semantics
of RCA and identifying alternative solutions. We first characterise the acceptable solutions
as those families of concept lattices which belong to the space determined by the initial
contexts (well-formed), which cannot scale new attributes (saturated), and which refer
only to concepts of the family (self-supported). We adopt a functional view on the RCA
process by defining the space of well-formed solutions and two functions on that space:
one expansive and the other contractive. In this context, the acceptable solutions are the
common fixed points of both functions. We show that RCA returns the least element of
the set of acceptable solutions. In addition, it is possible to build dually an operation that
generates its greatest element. The set of acceptable solutions is a complete sublattice
of the interval between these two elements. Its structure, and how the defined functions
traverse it, are studied in detail.

Contents

1 Introduction 2

2 Preliminaries and related work 5
2.1 Basics of formal concept analysis . 5
2.2 Extending formal concept analysis with scaling . 6
2.3 Other extensions . 9
2.4 A very short introduction to RCA . 10
2.5 Dependencies and cycles . 13

3 Motivating examples 14
3.1 RCA may accept different families of concept lattices 14
3.2 Minimal RCA example . 15

4 Dual context-lattice space 16
4.1 The space of contexts K . 17
4.2 The space of lattices L . 18
4.3 The lattice T of context-lattice pairs . 20
4.4 The lattice O of families of context-lattice pairs . 22

∗. This is the author version formatted with the original JAIR style. Only differences beyond style are
table of content, paper format and title nonuppercasing. doi: 10.1613/jair.1.17882

© 2025 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

https://doi.org/10.1613/jair.1.17882

Jérôme Euzenat

5 A functional standpoint on RCA 24
5.1 The expansion function EF ∗ . 24
5.2 Self-supported lattices . 25
5.3 The contraction function PQ∗ . 26

6 The fixed points of EF ∗ and PQ∗ 27
6.1 Fixed points . 27
6.2 Closure functions (EF ∗∞ and PQ∗∞) . 29
6.3 Acceptable solutions . 30

7 The fixed-point semantics of RCA 31
7.1 Classical RCA computes EF ∗’s least fixed point . 32
7.2 Greatest fixed-point (of PQ∗) semantics . 32
7.3 The structure of fixed points . 34

8 Conclusion 42

9 Bibliography 44

1. Introduction

Formal concept analysis (FCA) is a well-defined and widely used operation for extracting
concept lattices from binary data tables [Ganter and Wille, 1999]. This means that, from
a set of objects described by Boolean attributes (called context), it will generate the set of
all descriptions relevant to these objects (called concepts) organised in a lattice following
a generalisation order relation between these concepts. For instance, from a description of
people through their diploma, major and current job it is possible to generate concepts about
those bachelors in literature who hold a teacher position. This concept is a subconcept of
bachelors in literature, which is a subconcept of that of people having a bachelor degree.
The subconcepts add more constraints (attributes) to the objects they cover and thus cover
less objects. These concepts, in turn, may be used to study the diploma-job matching.

Many other techniques exist in AI and elsewhere for analysing data. Features that
distinguish FCA is that it is symbolic, i.e. concept descriptions are algebraic combinations of
attributes, and complete, i.e. FCA provides the lattice of all symbolically described concepts
covering the input data. From this set, it is possible to select those which are more relevant
to a particular purpose. Some numerical techniques would instead provide the concepts
which optimise a criterion or may project the object descriptions in a space that make their
separation and grouping easier. This leads to select the concepts to be considered, for which
a description remains to be found. FCA and these types of techniques are complementary.

Formal concept analysis has been put to work in a variety of applications [Ganter et
al., 2005; Missaoui et al., 2022], but its Boolean descriptions are limited with respect to
real data. It has thus received many extensions for using concrete domains to overcome this
limitation. For instance, people may be further characterised by their salary, age and hobby.
‘Conceptual scaling’ can group age and salary into intervals so as to be treated by FCA.
However, such extensions do not cover relations between objects themselves: the fact that
students have been taught by specific teachers or have been registered to specific schools.

Relational concept analysis (RCA) extends FCA by taking into account relations between
objects [Rouane Hacène et al., 2013a]. Such relations induce possible ‘relational attributes’

2

The fixed-point semantics of relational concept analysis

that are added to the initial contexts, through ‘relational scaling’. From a family of related
scaled contexts, RCA generates a family of dependent concept lattices which may include
concepts that would not exist in FCA. For instance, people may be related to their household,
their employer or their properties. Household, themselves may be described by their income,
size and related to their members and the neighbourhood in which they are settled. This
may lead to classify household depending on theses features and creating new attributes for
people based on whether they live in a low-income household and whether they have been
employed by a school. These new attributes, in turn, will generate new people concepts
such as low-income household teachers and may lead to unveil indirect relations between
household and jobs.

Although RCA was initially targeting conceptual description languages such as UML
[Huchard et al., 2007], it has been generalised to more varied description logic constructors
[Rouane Hacène et al., 2013a]. Relational concept analysis has been used for instance for
analysing the ecological and sanitary quality of water courses [Ouzerdine et al., 2019]. For
that purpose, it connects formal contexts corresponding to water courses to data collection
points which themselves are connected to measures and to organisms collected in water that
can be described by further attributes. These relations between objects help generating
richer concept descriptions comprising relations between concepts. It is then possible to
connect the abundance or scarcity of some species to the presence of some pollutants, e.g.
glyphosate. RCA has also been used for other purposes such as generating link keys used
to extract links from RDF data sets [Atencia et al., 2020].

In principle, RCA contributes to the completeness of FCA by providing more concepts
to classify objects in. However, some concepts that can be considered acceptable may still
not be generated by RCA. Indeed, in presence of circular relationships between objects,
RCA may not identify reciprocally supporting concepts. For instance, consider that people
are related to the schools they have attended, and schools are related to the students that
they graduated. People attended multiple schools and schools had many student. There
may be populations who have attended specific groups of schools and graduated from these.
Although there may be no attribute distinguishing these populations and groups, they can
be described by having attended at least one school of the group of schools having graduated
only students of the population. These reciprocally supporting attributes lead to a refined
version of the returned concept lattice which contains more concepts. Such concepts may
reveal distinct populations based on various hidden factors not directly available from the
data, such as wealth or information whose collection is not possible.

These mutually supported concepts may not be returned by RCA. However, they de-
termine families of more complete concept lattices covering the data. Hence, it remains
to determine which unique family is returned by RCA. In this respect, this paper may be
thought of as a way to restore the completeness of RCA by providing more possible con-
cepts. This completeness may be useful in applications in which the most relevant solution
is not the minimal one. It may also contribute to unveil more implications or dependencies
between concepts.

This problem of alternative RCA results stemmed out of curiosity. It occurred to us
through experimenting with relational concept analysis for extracting link keys. Although
RCA was returning acceptable results, it was easy to identify other acceptable results that
it did not return. When RCA is used for extracting description logic terminologies, it makes

3

Jérôme Euzenat

sense to return minimal terminologies that may be extended. But different sets of link keys
would return totally different sets of links. The problem also manifests itself in applications
in which developers add artificial identifiers in their data in order to constrain the returned
solution to include more concepts [Braud et al., 2018; Dolques et al., 2012].

To understand why such concepts are not provided, and which concepts are returned
by RCA, this paper questions its semantics. The semantics of relational concept analysis
has, so far, been provided in a rather operational way [Rouane Hacène et al., 2013b]. It
specifies that RCA returns a family of concept lattices referring to each other that describe
the input data and it shows that this result is unique. However, when there exist cycles
in the dependencies between data, several families may satisfy these constraints. Hence,
relational concept analysis needs a more precise and process-independent semantics that
defines what it returns. For that purpose, this paper provides a structured description of
the space on which relational concept analysis applies. It then defines acceptable solutions
as those families of concept lattices which belong to the space determined by the initial
family of formal contexts (well-formed), cannot scale new attributes (saturated), and refer
only to concepts of the family (self-supported).

Relational concept analysis is then studied in a functional framework. It characterises
the acceptable solutions as the fixed points of two functions, one expansive, which extends
concept lattices as long as there are reasons to generate concepts distinguishing objects,
and the other contractive, which reduces concept lattices as long as the attributes they are
built on are not supported by remaining concepts. These functions can be iterated and the
acceptable solutions are those families of concept lattices which are fixed points for both
(Proposition 28): there is no reason to either extend or reduce them. The results provided
by RCA are then proved to be the smallest acceptable solution, which is the least fixed point
of the expansive function (Proposition 29). It also offers an alternative semantics based on
the greatest element of this set, which is the greatest fixed point of the contractive function
(Proposition 30). The structure of the set of fixed points is further characterised to support
algorithmic developments.

This paper extends the results obtained for the RCA0 restriction of RCA [Euzenat, 2021],
which contains a single formal context, hence a single concept lattice, and no attribute, only
relations. In spite of the simplicity of RCA0, the main arguments of this work were already
present and it remains a good introduction to the considered problems. A specific research
report [Euzenat, 2023] builds on the results established in [Euzenat, 2021] and extends them
step-by-step to RCA. It also explains the legacy names used here for functions.

The present paper offers a direct and more synthetic formulation of the fixed-point
semantics of RCA and the space of alternative acceptable solutions.

We first present the work on which this one builds (relational concept analysis) and
relevant related work (Section 2). Then, simple examples are provided to illustrate that
relational concept analysis may accept concept lattices which are not those provided by the
RCA operation (Section 3). In order to determine which could be the acceptable solutions
of relational concept analysis, Section 4 circumscribes the space of objects that it consid-
ers. Two functions, an expansive function, corresponding to the operations of RCA, and a
contractive function, aiming at finding self-supported solutions, are defined on this space
(Section 5). The fixed points of these functions are discussed leading to a redefinition of

4

The fixed-point semantics of relational concept analysis

acceptable solutions as those objects of the space which are fixed points for both functions
(Section 6). In consequence, solutions returned by RCA are precisely characterised as the
smallest acceptable solution, a dual operation returning the greatest acceptable solution can
be defined, and the structure of the set of acceptable solutions is investigated (Section 7).

2. Preliminaries and related work

We mix preliminaries with related work for reasons of space, but also because the paper
directly builds on this related work.

2.1 Basics of formal concept analysis

This paper relies only on the most basic results of formal concept analysis expressed as
order-preserving functions.

Formal Concept Analysis (FCA) [Ganter and Wille, 1999] starts with a formal context
(hereafter context) ⟨G,M, I⟩ such that G denotes a set of objects, M a set of attributes, and
I ⊆ G×M a binary relation between G and M , called the incidence relation. The statement
gIm is interpreted as ‘object g has attribute m’, also noted m(g). Two operators ·↑ and
·↓ define a Galois connection between the powersets ⟨2G,⊆⟩ and ⟨2M ,⊆⟩, with A ⊆ G and
B ⊆M :

A↑ = {m ∈M | gIm for all g ∈ A},
B↓ = {g ∈ G | gIm for all m ∈ B}.

The operators ·↑ and ·↓ are decreasing, i.e. if A1 ⊆ A2 then A↑
2 ⊆ A↑

1 and if B1 ⊆ B2 then
B↓

2 ⊆ B↓
1 . Intuitively, the less objects there are, the more attributes they share, and dually,

the less attributes there are, the more objects have these attributes. It can be checked that
A ⊆ A↑↓ and that B ⊆ B↓↑, that A↑ = A↑↓↑ and that B↓ = B↓↑↓.

A pair ⟨A,B⟩ ∈ 2G × 2M , such that A↑ = B and B↓ = A, is called a formal concept
(hereafter concept), where A = extent(⟨A,B⟩) is the extent and B = intent(⟨A,B⟩) the
intent of ⟨A,B⟩. Moreover, for a formal concept ⟨A,B⟩, A and B are closed for the closure
operations ·↑↓ and ·↓↑, respectively, i.e. A↑↓ = A and B↓↑ = B.

Concepts are partially ordered by ⟨A1, B1⟩ ≤ ⟨A2, B2⟩ ⇔ A1 ⊆ A2 or equivalently
B2 ⊆ B1. With respect to this partial order, the set of all formal concepts is a complete
lattice called the concept lattice of ⟨G,M, I⟩. It has for supremum the concept ⊤ = ⟨G,G↑⟩
and for infimum the concept ⊥ = ⟨M↓,M⟩.

Example 1 (Formal concept analysis). Starting from a context K0
1 = ⟨G1,M

0
1 , I

0
1 ⟩ with

G1 = {a, b, c}, M0
1 = {m1,m2,m3} and I01 as the incidence relation whose table is given

below, the application of FCA results in the lattice made of the concepts ABC, AB, C and
⊥ as:

5

Jérôme Euzenat

FCA(

K0
1 m1 m2 m3

a ×
b ×
c × ×

) =
m2

a, b

m1,m3

c

ABC

AB C

⊥

L0
1:

By convention, concept lattices are represented by their reflexive-transitive reduction (Haase
diagram) in which concepts are displayed in two parts: an upper part representing their
intent and a lower part representing their extent. They only display the proper part of their
intent and extent. Their actual intent is obtained by joining it to the union of the proper
intents of their more general concepts. Conversely, their extent is obtained by joining it to
the union of the proper extent of their more specific concepts. Hence, ABC = ⟨{a, b, c},∅⟩
and ⊥ = ⟨∅, {m1,m2,m3}⟩.

Formal concept analysis can be considered as a function that associates to a context
⟨G,M, I⟩ its concept lattice ⟨C,≤⟩ = FCA(⟨G,M, I⟩) (or B(G,M, I) [Ganter and Wille,
1999]). This is illustrated by Example 1. By abuse of language, when a variable L denotes
a concept lattice ⟨C,≤⟩, L will also be used to denote C.

The concepts that can be created from a context can be identified by their extent. Hence,
η(⟨G,M, I⟩) = 2G is the set of all concept names that may be used in any such concept
lattice1. We will identify the concepts by such sets; the extent of a so-named concept will
be the set of objects in its name. In any specific concept lattice L = FCA(K), the subset
η(L) of η(K) is the set of names of concepts in this lattice according to this convention as
illustrated in Example 2.

Example 2 (Concept names). Consider the context K0
1 of Example 1. The set of objects

of K0
1 being G1 = {a, b, c}, the set of concept names that can be created for them in any

concept lattice is η(K0
1) = {ABC,AB,AC,BC,A,B,C,⊥}. In the specific lattice obtained

in Example 1, the set of concept names is η(L0
1) = {ABC,AB,C,⊥}.

Throughout the paper, concepts are named after their extent. They will be displayed as
uppercase character strings.

In order to discuss algorithms performing formal concept analysis, we will restrict our-
selves to finite structures, as it is often the case. In such a case, from finite contexts are
generated finite lattices whose concepts have finite extents and intents.

2.2 Extending formal concept analysis with scaling

Formal concept analysis is defined on relatively simple structures hence many extensions
of it have been designed. These may allow formal concept analysis to (a) deal with more
complex input structures, and/or (b) generate more expressive and interpretable knowledge
structures.

1. A similar remark is made in [Wajnberg, 2020, §4.1.2].

6

The fixed-point semantics of relational concept analysis

2.2.1 Scaling: a generalisation

Scaling is one kind of extension of type (a). It is a way to encode a more complex structure Σ
into FCA. For that purpose, a scaling operation ς determines a set Dς,Σ of Boolean attributes
to be added to a context K from a structure Σ. In scaled contexts, these attributes can
be interpreted so that the incidence relation I is immediately derived from the attribute
m ∈ Dς,Σ following:

Σ |= gIm or Σ |= m(g).

Hence, adding attributes M ′ to a context under such a structure Σ consists of adding the
attributes and extending the incidence relation according to this interpretation. It may be
performed as:

KΣ
+M ′(⟨G,M, I⟩) = ⟨G,M ∪M ′, I ∪ {⟨g,m⟩ ∈ G×M ′ | Σ |= m(g)}⟩,

and suppressing them as:

KΣ
−M ′(⟨G,M, I⟩) = ⟨G,M \M ′, I \ {⟨g,m⟩ ∈ G×M ′}⟩.

Applying a scaling operation ς to a context K following a structure Σ can thus be
decomposed into (i) determining the set of attributes Dς,Σ to add, and (ii) extending the
context with these attributes:

σς(K,Σ) = KΣ
+Dς,Σ

(K).

This unified view of scaling may be applied to many available scaling operations, including
the initial conceptual scaling [Ganter and Wille, 1999] and logical scaling [Prediger, 1997].
RCA relies on relational scaling.

2.2.2 Relational scaling

Relational scaling operations (ς) considered in [Rouane Hacène et al., 2013a] create relational
attributes from a binary relation r ⊆ G × G′ between two sets of objects G = dom(r) and
G′ = cod(r) and a concept lattice L on G′. ς(r, c) provides the syntactic form of the attribute.
For example, qualified existential scaling (ς = ∃) is expressed by ∃(r, c) = ∃r.c. For instance,
the employer relation may relate people to companies depending on whether one works for
the other. If the company lattice contains the school concept, then the relational attribute
∃employer.School may be scaled and holds for all people employed by a school.

Thus, the set of qualified existential attributes are:

D∃,⟨r,L⟩ = {∃r.c | c ∈ η(L)}.

Such attributes are interpreted, according to a closed-world description logic interpretation,
by

⟨r, L⟩ |= gI∃r.c iff ∃g′; ⟨g, g′⟩ ∈ r ∧ g′ ∈ extent(c).

This is illustrated in Example 3.

Example 3 (Relational scaling). Consider that the relation q is given by the table:

7

Jérôme Euzenat

q a b c

d ×
e ×
f ×

between G1 = {a, b, c} and G2 = {d, e, f} and consider the concept lattice L0
1 corresponding to

the context K0
1 of Example 1. The concepts in L0

1 have names in η(L0
1) = {ABC,AB,C,⊥}

(Example 2) hence scaling by σ∃ will provide the attribute set {∃q.ABC, ∃q.AB, ∃q.C,∃q.⊥}.
The description of the relation q allows to uncover the incidence relation for these (the
incidence relation for ⊥ is always empty for ∃ so never displayed in the examples):

∃q
.A

B
C

∃q
.A

B

∃q
.C

d × ×
e × ×
f × ×

If, in addition, the context K0
2 of G2 had two other attributes n1 and n2 whose incidence

relation is given as I02 displayed below, then the scaling operation would correspond to:

σ∃(

K0
2 n1 n2

d ×
e × ×
f

,

q a b c

d ×
e ×
f ×

, m2

a, b

m1,m3

c

ABC

AB

C

) =

K1
2 n

1

n
2 ∃q
.A

B
C

∃q
.A

B

∃q
.C

d × × ×
e × × × ×
f × ×

When generating relational attributes, scaling only relies on the names of the concepts
in L. It is thus possible to define the sets of attributes from the set of names. The set of
relational attributes that can be scaled from ς and r against a set of concept of names N is
Dς,r,N = {ς(r, c) | c ∈ N}. This can be used with η(L), i.e. the names of concepts actually
in L, or with η(K), i.e. the names of all possible concepts to be generated from a context
K. Example 4 illustrates this.

Example 4 (Set of relational attributes). For the context K0
2 of Example 3, if there is only

one relation q, whose codomain is K0
1 of Example 1, and the existential scaling operation ∃,

then the set of possibly scalable relational attributes is:

D∃,q,η(K0
1)

= {∃q.ABC,∃q.AB,∃q.AC,∃q.BC,∃q.A,∃q.B, ∃q.C,∃q.⊥}.

But using only those concepts from the lattice L0
1 obtained in Example 1, this set is reduced

to:
D∃,q,η(L0

1)
= {∃q.ABC, ∃q.AB, ∃q.C,∃q.⊥}.

Various relational scaling operations exist, such as existential, strict and wide universal,
min and max cardinality, which all follow the classical role restriction semantics of description
logics [Baader et al., 2007] under the closed-world assumption (see Table 1). The set of

8

The fixed-point semantics of relational concept analysis

Table 1: Relational scaling operations (inspired from [Braud et al., 2018; Rouane Hacène
et al., 2013a]) and additional link key condition scaling operations [Atencia et al.,
2020].

name language (D) Σ condition (m(g))

existential ∃r R r(g) ̸= ∅
universal (wide) ∀r.c R, L r(g) ⊆ extent(c)
strict universal ∀∃r.c R,L r(g) ̸= ∅ ∧ r(g) ⊆ extent(c)
contains (wide) ∀c.r R, L extent(c) ⊆ r(g)
strict contains ∀∃c.r R, L extent(c) ̸= ∅

∧extent(c) ⊆ r(g)
qualified existential ∃r.c R, L r(g) ∩ extent(c) ̸= ∅
qualified min cardinality ≤n r.c R, L |r(g) ∩ extent(c)| ≤ n
qualified max cardinality ≥n r.c R, L |r(g) ∩ extent(c)| ≥ n

∀-condition ∀⟨r, r′⟩k R×R′, LC×C′ r(g) =k r′(g′)
∃-condition ∃⟨r, r′⟩k R×R′, LC×C′ r(g) ∩k r′(g′) ̸= ∅

relational attributes obtained from a relation r by relational scaling may be large but remains
finite as long as G′ = cod(r) is finite. Cardinality constraints, relying on integers, may entail
infinite sets of concepts in theory, but in practice, when G′ is finite, the set of meaningful
cardinality attributes is bounded by |G′|.

In fact, RCA may be considered as a very general way to apply relational scaling across
contexts. Various kinds of relational scaling operations have been provided [Atencia et al.,
2020; Braud et al., 2018; Wajnberg, 2020].

2.3 Other extensions

There are other extensions [Chaudron and Maille, 2000; Ferré and Ridoux, 2000; Ganter
and Kuznetsov, 2001] providing formal concept analysis with more expressiveness in the
expression of intents without scaling (type b extension). Instead of scaling, they change the
structure of the set of attributes, staying within the scope of Galois lattices. However, these
extensions are not directly affected by the problem of context dependencies considered here
as the attributes do not refer to concepts.

On the contrary, other approaches [Ferré and Cellier, 2020; Kötters, 2013] aim at extract-
ing conceptual structures from n-ary relations without resorting to scaling. Their concepts
have intents that can be thought of as conjunctive queries and extents as tuples of objects, i.e.
answers to these queries. Hence, instead of being classes, i.e. monadic predicates, concepts
correspond to general polyadic predicates. For that purpose, they rely on more expressive
input, e.g. in Graph-FCA [Ferré and Cellier, 2020] the incidence relation is a hypergraph
between objects, and produce more expressive representations. A comparison of RCA and
Graph-FCA is provided in [Keip et al., 2020]. Graph-FCA adopts a different approach from
RCA but should, in principle, suffer from the same problem as the one considered here as

9

Jérôme Euzenat

soon as it contains circular dependencies: intents would need to refer to concepts so created,
i.e. named subqueries. This remains to be studied.

Finally, description logic base mining [Baader and Distel, 2008; Guimarães et al., 2023]
and relational concept analysis share the same purpose: inferring a TBox from an ABox
(taken as an interpretation). However, RCA does this by introducing new named concepts
based on FCA, where description logic base mining does not introduce new names but uses
new concept descriptions inspired from Duquenne-Guigues implication bases [Guigues and
Duquenne, 1986]. Where, in Example 3, relational scaling would use attribute ∃q.AB, base
mining would use the description ∃q.∃m2.⊤. As soon as cycles occur in context dependencies,
this naturally leads to cyclic concept definitions. This has been interpreted with the greatest
fixed-point semantics in ELgfp. However, led by complexity considerations, work has focused
on extracting minimal bases in EL through unravelling [Baader and Distel, 2008; Guimarães
et al., 2023]. The problem raised in this paper is different but applies as well to description
logic base mining as soon as it is taken as a knowledge induction task from data: circular
dependencies may lead to different, equally well-behaving, bases that would be worth taking
in consideration.

2.4 A very short introduction to RCA

Relational Concept Analysis (RCA) [Rouane Hacène et al., 2013a] extends FCA to the
processing of relational datasets and allows inter-object relations to be materialised and
incorporated into formal concept intents. It may also be thought of as a general way to deal
with circular references using different scaling operations.

RCA applies
– a set of relational scaling operations Ω on
– a family of contexts K0 = {⟨Gx,M

0
x , I

0
x⟩}x∈X indexed by a finite set X, such that, if

x ̸= z, Gx ∩Gz = ∅, and
– a finite set of binary relations R, i.e. relations r ⊆ Gx ×Gz (with x, z ∈ X).
⟨K0, R⟩ is called a relational context2. Each context of the family Kt may be abbreviated
as Kt

x = ⟨Gx,M
t
x, I

t
x⟩. The use of the ordinal superscript t will become clearer in a few

lines and can be ignored at that stage. We note Rx = {r ∈ R | dom(r) = Gx} and
Rx,z = {r ∈ Rx | cod(r) = Gz}.

2.4.1 Concept names and relational attributes

The notation used for expressing sets of relational attributes can be generalised. For RCA,
η∗(K0) = {η(K0

x)}x∈X is the indexed set of all concept names induced from all contexts in
K0. Similarly, for an indexed set of concept lattices L = {Lx}x∈X , η∗(L) = {η(Lx)}x∈X .
Then, given a set of relational scaling operations Ω, a set of relations R, the set of scalable
relational attributes for a concept with respect to an indexed family of sets of concept names
N is:

DΩ,Rx,N =
⋃
ς∈Ω

⋃
z∈X

⋃
r∈Rx,z

Dς,r,Nz .

2. We use the term ‘relational context’ instead of ‘relational context family’.

10

The fixed-point semantics of relational concept analysis

This notation is used for identifying the relational attributes that can be scaled for a
context Kx from a set of concept lattices:

DΩ,Rx,L = DΩ,Rx,η∗(L),

or the set of all the possible relational attributes that can be scaled for a context Kx given
a family of formal contexts K0 as

DΩ,Rx,K0 = DΩ,Rx,η∗(K0).

Since ∀z ∈ X, η(Lz) ⊆ η(K0
z), then DΩ,Rx,{Lz}z∈X

⊆ DΩ,Rx,K0 . This is illustrated by
Example 5.

Example 5 (Set of relational attributes (cont’d)). Following Example 4, if K0
2 , whose

objects are {d, e, f}, is also linked to itself (K0
2) by the relation s and the current set of

concept names is η(L0
2) = {DEF,DE,E}, then it would additionally scale the relational

attributes: D{∃},{s},{L0
2} = D∃,s,η(L0

2)
= {∃s.DEF, ∃s.DE, ∃s.E}. If, in addition, the strict

contains scaling operation (∀∃C.r, see Table 1) is used, then new relational attributes would
be:

D{∃,∀∃},{q,s},{L0
1,L

0
2} = {∃q.ABC,∃q.AB, ∃q.C,∃q.⊥,∃s.DEF, ∃s.DE, ∃s.E,

∀∃ABC.q,∀∃AB.q, ∀∃C.q,∀∃⊥.q,∀∃DEF.s, ∀∃DE.s, ∀∃E.s}.

The semantics of these attributes is provided in the same way as above and noted
⟨R,L⟩ |= gIς(r, c).

2.4.2 Operations and algorithm

Hereafter, we will consider relational scaling with the structure Σ = ⟨R,L⟩ made of a set
of binary relations R between two sets of objects from K0, and a family Lt = {Lt

x}x∈X of
concept lattices obtained from Kt.

RCA applies relational scaling operations from a set Ω to each Kt
x ∈ Kt and all relations

r ∈ Rx,z from the set of concepts in the corresponding Lt
z = FCA(Kt

z). Such scaling is
defined as:

σΩ(Kx, R, L) = K
⟨R,L⟩
+DΩ,Rx,L

(Kx).

The classical RCA algorithm, that is called here RCA, thus relies on FCA and σΩ. More
precisely, it applies these in parallel on all contexts. Hence, FCA∗ and σ∗

Ω are defined as:

FCA∗({Kx}x∈X) = {FCA(Kx)}x∈X ,

σ∗
Ω({Kx}x∈X , R, L) = {σΩ(Kx, R, L)}x∈X .

such that L is a family of concept lattices. The whole family of concepts lattices needs to
be passed to σ.

RCA starts from the initial family of contexts K0 and iterates the application of the two
operations:

Kt+1 = σ∗
Ω(K

t, R,FCA∗(Kt))

until reaching a fixed point, i.e. reaching n such that Kn+1 = Kn. Then, RCAΩ(K
0, R) =

FCA∗(Kn).
Thus, the RCA algorithm proceeds in the following way:

11

Jérôme Euzenat

1. Initial contexts: t← 0; {⟨Gx,M
t
x, I

t
x⟩}x∈X ← {⟨Gx,Mx, Ix⟩}x∈X .

2. {Lt
x}x∈X ← FCA∗({⟨Gx,M

t
x, I

t
x⟩}x∈X) (or, for each context, ⟨Gx,M

t
x, I

t
x⟩ the correspond-

ing concept lattice Lt
x = FCA(⟨Gx,M

t
x, I

t
x⟩) is created using FCA).

3. {⟨Gx,M
t+1
x , It+1

x ⟩}x∈X ← σ∗
Ω({⟨Gx,M

t
x, I

t
x⟩}x∈X , R, {Lt

x}x∈X) (i.e. relational scaling is
applied, for each relation r whose codomain lattice has new concepts, generating new
contexts ⟨Gx,M

t+1
x , It+1

x ⟩ including both plain and relational attributes in M t+1
x).

4. If ∃x ∈ X such that M t+1
x ̸= M t

x (scaling has occurred), then t← t+ 1; go to Step 2.
5. Return {Lt

x}x∈X .
This is illustrated by Example 6.

Example 6 (Relational concept analysis). Consider two relations p and q defined as:

p d e f

a ×
b ×
c ×

q a b c

d ×
e ×
f ×

and applying on the contexts K0
1 of Example 1 and K0

2 of Example 3 (Figure 1).
Applying FCA∗ to the two contexts K0

1 and K0
2 , provides the very simple lattices L0

1

and L0
2 of Figure 1 with concepts ABC, AB, C and ⊥, and DEF , DE and E, respectively.

Applying scaling, as seen partially in Example 3, provides the context K1
1 with new attributes

∃p.DEF , ∃p.DE, ∃p.E and K1
2 with ∃q.ABC, ∃q.AB, ∃q.C (Example 4). Applying FCA∗

to these contexts provides the lattices L1
1 and L1

2 with additional concepts B and F . These
can in turn go through scaling and unveil new attributes ∃p.F and ∃q.B added to K1

1 and K1
2

to give K2
1 and K2

2 . FCA∗ introduces the new attributes in the intent of relevant concepts
but does not introduce any new concept. Hence the process stops and RCA returns the family
of concept lattices {L2

1, L
2
2}.

The result is thus quite different from the {L0
1, L

0
2} that would have been returned by FCA

alone.

2.4.3 Properties and semantics

A context K = ⟨G,M, I⟩ is a subcontext of another K ′ = ⟨G′,M ′, I ′⟩ whenever G ⊆ G′,
M ⊆M ′ and I = I ′ ∩ (G×M) [Ganter and Wille, 1999, §3.1]. By abuse of notation, this is
noted K ⊆ K ′. This is generalised to families of contexts {Kx}x∈X ⊆ {K ′

x}x∈X whenever
∀x ∈ X, Kx ⊆ K ′

x.
RCA always reaches a closed family of contexts for reason of finiteness [Rouane Hacène

et al., 2013a] and the sequence (Kt)nt=0 is non-(intent-)contracting, i.e. ∀t ≥ 0,Kt ⊆ Kt+1

[Rouane Hacène et al., 2013b].
The RCA semantics characterises the set of concepts in resulting RCA lattices as all

and only those concepts grounded on the initial family (K0) based on relations (R) [Rouane
Hacène et al., 2013b]. This can thus be considered as a well-grounded semantics: an attribute
is scaled and applied to an object at iteration t + 1 only if its condition applies at stage t.
Hence, everything is ultimately relying on K0.

[Rouane Hacène et al., 2013b] established that RCA indeed finds the Kn satisfying these
constraints through correctness (the concepts of FCA∗(Kn) are grounded in K0 through R)
and completeness (all so-grounded concepts are in Kn).

12

The fixed-point semantics of relational concept analysis

K0
1 m1 m2 m3

a ×
b ×
c × ×

m2

a, b

m1,m3

c

ABC

AB C

⊥
L0

1:

f

n1

d

n2

e

DEF

DE

E

L0
2:

K0
2 n1 n2

d ×
e × ×
f

K1
1 m

1

m
2

m
3

∃p
.D

E
F

∃p
.D

E

∃p
.E

a × × ×
b × × × ×
c × × ×

∃p.DEF

m2,∃p.DE

a

m1,m3

c

∃p.E

b

ABC

AB

B C

⊥
L1

1:

∃q.ABC

n1, ∃q.AB

d

∃q.C

f

n2

e

DEF

DE

E F

⊥
L1

2:

K1
2 n

1

n
2 ∃q
.A

B
C

∃q
.A

B

∃q
.C

d × × ×
e × × × ×
f × ×

K2
1 m

1

m
2

m
3

∃p
.D

E
F

∃p
.D

E

∃p
.E

∃p
.F

a × × ×
b × × × ×
c × × × ×

∃p.DEF

m2,∃p.DE

a

m1,m3,
∃p.F
c

∃p.E

b

ABC

AB

B C

⊥
L2

1:

∃q.ABC

n1, ∃q.AB

d

∃q.C

f

n2,∃q.B
e

DEF

DE

E F

⊥
L2

2:

K2
2 n

1

n
2 ∃q
.A

B
C

∃q
.A

B

∃q
.B

∃q
.C

d × × ×
e × × × × ×
f × ×

Figure 1: The three iterations of RCA from the initial contexts K0
1 and K0

2 .

2.5 Dependencies and cycles

As can be seen, relations in RCA define a dependency graph between objects (of different
or the same context). In turn, this graph of objects induces a dependency graph between
concepts through the scaled attributes that refer to other concepts. It also induces a de-
pendency graph between contexts: an edge exists between two contexts if an object of the
former is related to an object of the latter.

This paper is related to the circular dependencies, i.e. the circuits, that may exist within
these graphs. Circular dependencies create a problem when one wants to define the family
of concept lattices that should be returned by relational concept analysis. As will be seen
in Section 3, there may exists several such families.

13

Jérôme Euzenat

3. Motivating examples

In order to illustrate the weakness of the RCA semantics, we first carry on the introductory
Examples 1–6 (§3.1). We then display it on a more minimal example that will be carried
over the paper (§3.2).

From such a simple basis, it is possible to consider more complex settings:
– By using more than two contexts;
– By using more than two relations between these contexts;
– By using more than two objects in each context;
– By using more than zero attributes in the contexts.

3.1 RCA may accept different families of concept lattices

The simple Example 6 (Figure 1) does not present a result in which each object is identified
by a single class. Indeed, a has not more attributes than b. This result could also be obtained
with far more objects a′, a′′, etc. sharing the attributes of a and b, or duplicating other
objects.

However, the lattices L⋆
1 and L⋆

2 displayed in Figure 2 seem another good way to describe
the data given as input to RCA. There is in fact an objective difference between AC and
BC: AC denotes all objects connected by p to DF and BC all objects connected by p to
EF . Reciprocally, DF denotes all objects connected by q to AC and EF those connected
by q to BC.

K⋆
1 m1 m2 m3 ∃p

.D
E
F

∃p
.D

E

∃p
.D

F

∃p
.E

F

∃p
.D

∃p
.E

∃p
.F

a × × × × ×
b × × × × ×
c × × × × × ×

K⋆
2 n1 n2 ∃q

.A
B
C

∃q
.A

B

∃q
.A

C

∃q
.B

C

∃q
.A

∃q
.B

∃q
.C

d × × × × ×
e × × × × × ×
f × × × ×

∃p.DEF

m2, ∃p.DE ∃p.DF ∃p.EF

∃p.D
a

∃p.E

b

m1,m3, ∃p.F
c

ABC

AB AC BC

A B C

⊥L⋆
1:

∃p.ABC

n1,∃p.AB ∃p.AC ∃p.BC

∃p.A

d

n2,∃p.B
e

∃p.C

f

DEF

DE DF EF

D E F

⊥L⋆
2:

Figure 2: Alternative concept lattices for the example of Section 3.1 (⋆ is simply a way to
identify these objects).

These lattices share many common points with those returned by RCA: they are also
(i) valid concept lattices, (ii) whose contexts extend K0

1 and K0
2 with attributes of D{∃},{p},K0

and D{∃},{q},K0 (Example 4), (iii) stable for scaling, and (iv) such that each attribute refers

14

The fixed-point semantics of relational concept analysis

only to concepts in the lattices. The only difference with L2
1 and L2

2 is that they are not those
returned by RCA. We will temporarily informally consider lattices sharing these features as
acceptable.

But, if there exists several acceptable solutions for a given Ω and R, why does RCA
only returns one of these, and which one? To help answering this question, we illustrate the
problem with a minimal running example below.

3.2 Minimal RCA example

As another example, consider the following two empty contexts K0
3 and K0

4 of Figure 4 and
the two relations p and q of Figure 3.

p c d

a ×
b ×

q a b

c ×
d ×

Figure 3: Relations p and q for RCA.

Applying FCA to the two contexts K0
3 and K0

4 provides the very simple lattices L0
3 and

L0
4 of Figure 4. From this, RCA generates new context K1

3 and K1
4 through scaling which

provides new lattices L1
3 and L1

4 (Figure 4).

K0
3

a
b

K0
4

c
d

a, b
ABL0

3: c, d
CDL0

4:

K1
3 ∃p

.C
D

a ×
b ×

K1
4 ∃q

.A
B

c ×
d ×

∃p.CD

a, b
ABL1

3:
∃q.AB

c, d
CDL1

4:

Figure 4: The two iterations of RCA from the initial contexts K0
3 and K0

4 .

The lattices L1
3 and L1

4 of Figure 4 are those returned by RCA as applying scaling from
them returns the same contexts K1

3 and K1
4 .

However, there could be other acceptable solutions such as those displayed in Figure 5.
They are all acceptable solutions for {K0

3 ,K
0
4} (Figure 4) as they satisfy the four conditions

of Section 3.1.
On the contrary, Figure 6 displays a family of concept lattices {L#

3 , L
#
4 } which is not an

acceptable solution. Although they contain all concepts of {L0
3, L

0
4} and no concept not in

{L⋆
3, L

⋆
4}, they would generate more attributes through scaling and applying RCA to their

contexts {K#
3 ,K#

4 } would lead to {L⋆
3, L

⋆
4}

Hence the question raised in the previous section: Why does RCA return only one
solution, and which one? Answering it requires to reconsider the RCA semantics. More
precisely, it requires to define formally which families of concept lattices could be considered
as acceptable solutions and which of them is returned by the RCA operation.

15

Jérôme Euzenat

K⋆
3 ∃p

.C
D

∃p
.C

∃p
.D

a × ×
b × ×

K⋆
4 ∃q

.A
B

∃q
.A

∃q
.B

c × ×
d × ×

∃p.CD

∃p.C
a

∃p.D

b

AB

A B

⊥L⋆
3:

∃q.AB

∃q.A
c

∃q.B

d

CD

C D

⊥L⋆
4:

K′
3 ∃p

.C
D

∃p
.C

a × ×
b ×

K′
4 ∃q

.A
B

∃q
.A

c × ×
d ×

∃p.CD

b

∃p.C
a

AB

A

L′
3:

∃q.AB

d

∃q.A
c

CD

C

L′
4:

K′′
3 ∃p

.C
D

∃p
.D

a ×
b × ×

K′′
4 ∃q

.A
B

∃q
.B

c ×
d × ×

∃p.CD

a

∃p.D

b

AB

B

L′′
3 :

∃q.AB

c

∃q.B

d

CD

D

L′′
4 :

Figure 5: Alternative pairs of concept lattices covering the contexts of Figure 4.

K#
3 ∃p

.C
D

∃p
.C

a × ×
b ×

K#
4 ∃q

.A
B

∃q
.B

c ×
d × ×

∃p.CD

b

∃p.C
a

AB

A

L#
3 :

∃q.AB

c

∃q.B

d

CD

D

L#
4 :

Figure 6: A family of concept lattices {L#
3 , L

#
4 } which is not an acceptable solution.

We will thus redefine the objects on which RCA operates (§4), precising well-formedness,
and introduce two functions on this space (§5) from whose fixed points acceptability can be
defined (§6), offering a fixed-point semantics for relational concept analysis (§7).

4. Dual context-lattice space

In order to investigate the semantics of relational concept analysis, we need to define the
objects on which it applies. They are determined by three elements given once and for all:
K0 = {⟨Gx,M

0
x , I

0
x⟩}x∈X , R, and Ω. Through the application of RCA, only M t

x and Itx
change, hence the other may remain implicit.

These objects are introduced progressively by considering in a row: contexts (§4.1),
lattices (§4.2), context-lattice pairs (§4.3) and indexed families of context-lattice pairs (§4.4).
The first three subsections will only consider one context Kx, one concept lattice Lx and
one context-lattice pair Tx at a time; the fourth section will consider them together.

16

The fixed-point semantics of relational concept analysis

Hereafter, we use a simple and regular notation: K denotes contexts, L lattices, T
context-lattice pairs and O families of context-lattice pairs. In addition, R is used for
relations, N for names and D for attributes. Greek letters are devoted to some auxiliary
functions (η, κ, σ, π). E, F , P and Q are used for functions names and ∗ is used for
distinguishing the parallel application of such functions.

4.1 The space of contexts K

We first study the semantics of RCA from the standpoint of the contexts. The contexts
considered by RCA are scaled from an initial context using the scaling operations. Property 1
highlights that the incidence of the scaled attributes does only depend on the relation and
not on the concept lattices.

Property 1 (The incidence relation depends only on the attributes). Given a set Ω of
relational scaling operations, a family K = {⟨Gx,Mx, Ix⟩}x∈X of formal contexts and a set
R of relations on K. Given Lz and L′

z two concept lattices on Gz, for all scaled attributes
m ∈ DΩ,Rx,z ,Lz ∩DΩ,Rx,z ,L′

z
, ∀g ∈ Gx, ⟨R,Lz⟩ |= m(g) if and only if ⟨R,L′

z⟩ |= m(g).

Proof. m = ς(r, c) is scaled from a scaling operation ς, a relation r and a concept c (possibly
a cardinal n). From Table 1, ⟨R,Lz⟩ |= gIm only depends on ς, r and the extent of c.
However, ς and r are independent from Lz and L′

z. The concept c is identified by a name
which denotes its extent. Hence, its extent is the same in Lz and L′

z. So whether an object
of g ∈ Gx satisfies the attribute ς(r, c) or not depends solely on the attribute ς(r, c) and not
on the specific lattice considered.

This means that the interpretation of an attribute never changes: it is given by its syn-
tactic form ς(r, c) and, in particular, the concept name. Hence, when adding or suppressing
attributes, through KΣ

+M or KΣ
−M , Σ can be ⟨R,N⟩ with N an indexed set of names, and

in particular η∗(K0).
In RCA, the set of objects Gx does not change and for any object and attribute, either the

object satisfies the attribute or not. Property 1 entails that, if Mx ⊆M ′
x, then Ix ⊆ I ′x. Thus

we are justified in using, for RCA, the definition of subcontexts introduced in Section 2.4.3.
For comparing two contexts, it suffices to compare their sets of attributes: if Mx ⊆ M ′

x,
then Kx ⊆ K ′

x.
The attribute language DΩ,Rx,N that can be generated by scaling depends on the finite

set of relations R, the scaling operations Ω and the set of possible concepts identified by
their standardised names (§2.2.2 and 2.4.1). Given N ⊆ η∗(K0) an indexed family of names
of concepts that can be in the codomain of relations in R, the set of contexts that can be
obtained by scaling is

K N
K0

x,R,Ω = {K⟨R,η∗(K0)⟩
+M (K0

x) | M ⊆ DΩ,Rx,N}

with K
⟨R,η∗(K0)⟩
+M (.) the operation defined in §2.2. Passing η∗(K0) to K allows to interpret

the generated attributes and to determine I.
Below, when we write K N , the property applies for any {Nx}x∈X such that ∀x ∈ X,

Nx ⊆ η(K0
x), and in particular for η∗(K0).

We can define two operations, ∧ and ∨ on K N
K0

x,R,Ω.

17

Jérôme Euzenat

Definition 1 (Meet and join of contexts). Given K,K ′ ∈ K N
⟨G,M0,I0⟩,R,Ω, such that K =

⟨G,M0 ∪M, I0 ∪ I⟩ and K ′ = ⟨G,M0 ∪M ′, I0 ∪ I ′⟩, K ∨K ′ and K ∧K ′ are defined as:

K ∨K ′ = ⟨G,M0 ∪ (M ∪M ′), I0 ∪ (I ∪ I ′)⟩, (join)

K ∧K ′ = ⟨G,M0 ∪ (M ∩M ′), I0 ∪ (I ∩ I ′)⟩. (meet)

The set of contexts is closed by meet and join.

Property 2 ([Euzenat, 2021]). ∀K,K ′ ∈ K N
K0

x,R,Ω, K ∧ K ′ ∈ K N
K0

x,R,Ω and K ∨ K ′ ∈
K N

K0
x,R,Ω.

Proof. Meet and join are defined from the union and intersection of subsets of DΩ,Rx,K0

(Definition 1). But K N
K0

x,R,Ω is closed by union and intersection of the sets of attributes to
add to M0 and the incidence relation is fully determined by the set of attributes (Property 1).
Hence, meet and join of contexts in K N

K0
x,R,Ω belong to K N

K0
x,R,Ω.

4.2 The space of lattices L

From K N
K0

x,R,Ω, one can define L N
K0

x,R,Ω as the set of images of K N
K0

x,R,Ω by FCA. These are
concept lattices obtained by applying FCA on K0

x extended with a subset of DΩ,Rx,N :

L N
K0

x,R,Ω = {FCA(K
⟨R,η∗(K0)⟩
+M (K0

x)) | M ⊆ DΩ,Rx,N}.

For each subset of attributes, the lattice obtained by FCA is necessarily syntactically
different as its concepts refer to different attributes in their intents (at least one of them).

There is in fact a bijective correspondence between LK0
x,R,Ω and KK0

x,R,Ω [Ganter and
Wille, 1999, §1.2]. On the one hand, to any context in KK0

x,R,Ω corresponds only one lattice
by FCA. On the other hand, to any concept lattice ⟨C,≤⟩ ∈ LK0

x,R,Ω corresponds a formal
context:

κ(⟨C,≤⟩) = ⟨
⋃
c∈C

extent(c),
⋃
c∈C

intent(c),
⋃
c∈C

extent(c)× intent(c)⟩.

κ(L) collects the attributes and objects present in L intents to build the unique M and G,
from which the corresponding I is obtained.

It is such that FCA ◦ κ = idK and κ ◦ FCA = idL (idK and idL being the respective
identity functions). This may be stated as:

Property 3. K = κ(L) iff L = FCA(K).

Proof. ⇒) K = ⟨G,M, I⟩ = ⟨
⋃

c∈C extent(c),
⋃

c∈C intent(c),
⋃

c∈C extent(c)× intent(c)⟩ =
κ(⟨C,≤⟩) = κ(L). This means that ⟨C,≤⟩ is the concept lattice of a context ⟨G′,M ′, I ′⟩.
But since G =

⋃
c∈C extent(c) and M =

⋃
c∈C intent(c), then G = G′ and M = M ′. We

need to prove that I = I ′. Consider I ̸= I ′, this could be because there exists at least one
g ∈ G and m ∈M such that ⟨g,m⟩ ∈ I \ I ′ (or, but not exclusively, ⟨g,m⟩ ∈ I ′ \ I). In this
condition, there could not exists c ∈ C such that g ∈ extent(c) and m ∈ intent(c) (resp.
it exists). Then ⟨g,m⟩ ̸∈

⋃
c∈C extent(c)× intent(c) (resp. on the contrary it is there) and

18

The fixed-point semantics of relational concept analysis

thus I ̸=
⋃

c∈C extent(c)× intent(c) which contradicts ⟨G,M, I⟩ = κ(⟨C,≤⟩). Hence, I = I ′

and L = ⟨C,≤⟩ = FCA(⟨G,M, I⟩) = FCA(K)

⇐) L = ⟨C,≤⟩ = FCA(⟨G,M, I⟩) = FCA(K) entails ∀c ∈ C, ∀g ∈ extent(c), ∀m ∈
intent(c), gIm, i.e. extent(c) × intent(c) ⊆ I. In addition, if gIm, then there ex-
ists c ∈ FCA(⟨G,M, I⟩) = ⟨C,≤⟩ such that g ∈ extent(c) and m ∈ intent(c), thus
I ⊆

⋃
c∈C extent(c)× intent(c). Moreover, ⊤ = ⟨G,G↑⟩ ∈ C and ⊥ = ⟨M↓,M⟩ ∈ C, hence⋃

c∈C extent(c) = G and
⋃

c∈C intent(c) = M . Thus K = ⟨G,M, I⟩ = ⟨
⋃

c∈C extent(c),⋃
c∈C intent(c),

⋃
c∈C extent(c)× intent(c)⟩ = κ(L).

We define a specific type of homomorphisms between two concept lattices when concepts
are simply mapped into concepts with the same extent and a possibly increased intent3.

Definition 2 (Lattice homomorphism [Euzenat, 2021]). A concept lattice homomorphism
h : ⟨C,≤⟩ → ⟨C ′,≤′⟩ is a function which maps each concept c ∈ C into a corresponding
concept h(c) ∈ C ′ such that:
– ∀c ∈ C, intent(c) ⊆ intent(h(c)),
– ∀c ∈ C, extent(c) = extent(h(c)), and
– ∀c, d ∈ C, c ≤ d⇒ h(c) ≤′ h(c).

We note L ⪯ L′ if there exists a homomorphism from L to L′. In principle, L ≃ L′ if
L ⪯ L′ and L′ ⪯ L, but here, ≃ is simply =. This owes to the fact that the homomorphism
maps concepts of equal extent, hence, if they hold in both ways, there should be as many
concepts in each lattice and these concepts will also have the same intent.

Property 4 (FCA is monotone). ∀K = ⟨G,M, I⟩ and K ′ = ⟨G,M ′, I ′⟩,

K ⊆ K ′ ⇒ FCA(K) ⪯ FCA(K ′).

Proof. Any concept c ∈ FCA(K) characterises a set of objects extent(c) by the set of
attributes intent(c) that these objects are the only ones to satisfy. Since both contexts have
the same set of objects G, there are not more objects satisfying these in K ′ and since M ⊆M ′

these attributes are still in K ′, thus c ∈ FCA(K ′). Hence, it is always possible to define h
such as h(c) = c. Then extent(h(c)) = extent(c) and intent(h(c)) ⊇ intent(c). Moreover, if
c ≤ d, then h(c) ≤ h(d) because extent(c) ⊆ extent(d) entails extent(h(c)) ⊆ extent(h(d)).
Hence, FCA(K) ⪯ FCA(K ′) (Definition 2).

If K ⊆ K ′, then each concept that can be built from K can be built from K ′. The
additional attributes in M ′ can only be used to separate further objects of existing concepts,
introducing additional concepts. All concepts are preserved, possibly with a larger intent,
which preserves the homomorphism.

We can define ∧ and ∨ on L N
K0

x,R,Ω from the corresponding operators in K N
K0

x,R,Ω.

Definition 3 (Meet and join of lattices). Given L,L′ ∈ L N
K0

x,R,Ω,

L ∨ L′ = FCA(κ(L) ∨ κ(L′)), (join)
L ∧ L′ = FCA(κ(L) ∧ κ(L′)). (meet)

3. The results in the remainder of this section are specific to RCA: ⪯ is defined with the equality of extents
and ⊆ depends only on M because G is always the same.

19

Jérôme Euzenat

The set of lattices is also closed by meet and join:

Property 5. ∀L,L′ ∈ L N
K0

x,R,Ω, L ∧ L′ ∈ L N
K0

x,R,Ω and L ∨ L′ ∈ L N
K0

x,R,Ω.

Proof. L N
K0

x,R,Ω is closed by meet and join since K N
K0

x,R,Ω is closed by meet and join (Prop-
erty 2) and L N

K0
x,R,Ω is the image of K N

K0
x,R,Ω by FCA.

4.3 The lattice T of context-lattice pairs

Although K N and L N have been presented independently, it is useful to consider the two
sets together as, in RCA, lattices in L N are an intermediate result of the process which
is used for computing the next contexts. Instead of dealing with two interrelated spaces
independently, we tightly connect them. Doing so, we will consider objects which are pairs
of contexts and associated concept lattices through FCA. They are called context-lattice
pairs.

From any context in K , it is possible to generate a context-lattice pair using FCA. The
T constructor does this.

Definition 4 (T constructor). Given a context K ∈ K N , T : K N → K N ×L N generates
a context-lattice pair, such that:

T(K) = ⟨K,FCA(K)⟩.

We consider the set T N
K0

x,R,Ω of pairs in K N
K0

x,R,Ω ×L N
K0

x,R,Ω such that:

T N
K0

x,R,Ω = {⟨K,L⟩ ∈ K N
K0

x,R,Ω ×L N
K0

x,R,Ω|L = FCA(K)}.

This set is well defined because K N
K0

x,R,Ω has already been defined and L N
K0

x,R,Ω are precisely
those lattices obtained by FCA from an element of K N

K0
x,R,Ω.

Alternatively, using Property 3, it can be defined from κ:

T N
K0

x,R,Ω = {⟨K,L⟩ ∈ K N
K0

x,R,Ω ×L N
K0

x,R,Ω|K = κ(L)}.

As before, we use TK0
x,R,Ω = T

η∗(K0)
K0

x,R,Ω
and, for any ⟨K,L⟩ ∈ T N

K0
x,R,Ω we note:

k(⟨K,L⟩) = K,

l(⟨K,L⟩) = L.

It is possible to define the meet and join:

Definition 5 (Meet and join of context-lattice pairs). Given T , T ′ ∈ T N
K0

x,R,Ω T ∨ T ′ and
T ∧ T ′ are defined as:

T ∨ T ′ = T(k(T) ∨ k(T ′)), (join)
T ∧ T ′ = T(k(T) ∧ k(T ′)). (meet)

As this definition makes clear, the operations of T N only depend on the context part.
But the usual relations with the meet and join on contexts and lattices are preserved:

20

The fixed-point semantics of relational concept analysis

Property 6.

T ∨ T ′ = ⟨k(T) ∨ k(T ′), l(T) ∨ l(T ′)⟩,
T ∧ T ′ = ⟨k(T) ∧ k(T ′), l(T) ∧ l(T ′)⟩.

Proof. This is a simple consequence on the definition of conjunction and disjunction on
context-lattice pairs (Definition 4) and lattices (Definition 3) as:

L ∨ L′ = FCA(K ∨K ′), (join)
L ∧ L′ = FCA(K ∧K ′). (meet)

The set of context-lattice pairs is closed by meet and join:

Property 7. ∀T, T ′ ∈ T N
K0

x,R,Ω, T ∧ T ′ ∈ T N
K0

x,R,Ω and T ∨ T ′ ∈ T N
K0

x,R,Ω.

Proof. T N
K0

x,R,Ω is closed by meet and join because it is based on T (Definition 5), T builds a
context-lattice pair in T N

K0
x,R,Ω from contexts in K N

K0
x,R,Ω (Definition 4), and K N

K0
x,R,Ω itself

is closed by meet and join (Property 2).

We also define the order between two context-lattice pairs by combining the orders on
contexts and lattices:

Definition 6 (Order). Given T , T ′ ∈ T N
K0

x,R,Ω,

T ⪯ T ′ if k(T) ⊆ k(T ′) and l(T) ⪯ l(T ′).

Figure 7 presents the relations between K N , L N and T N and their respective orders.
Since FCA is monotone (Property 4), T ⪯ T ′ iff k(T) ⪯ k(T ′). Like before, we note T ≃ T ′

if T ⪯ T ′ and T ′ ⪯ T , and again ≃ is =.
This can be applied to the T constructor.

Property 8. ∀K,K ′ ∈ K N
K0

x,R,Ω,K ⊆ K ′ iff T(K) ⪯ T(K ′).

Proof. (⇒) This is due to monotony of FCA (Property 4). k(T(K)) = K ⊆ K ′ = k(T(K ′))
means that l(T(K)) = FCA(K) ⪯ FCA(K ′) = l(T(K ′)). Thus, T(K) ⪯ T(K ′). (⇐)
T(K) ⪯ T(K ′) entails, by Definition 6, that K ⊆ K ′.

This has the consequence that T = T ′ if and only if k(T) = k(T ′).
Joining together contexts and lattices was a preliminary step to consider families of such

pairs to represent the behaviour of relational concept analysis as a whole. This is done
hereafter.

21

Jérôme Euzenat

k(T ′) l(T ′)

k(T) l(T)
⊆ ⪯

T ′

T

⪯

k l

k l

FCA
κ

FCA
κK L

T

Figure 7: Relations between T , K and L .

4.4 The lattice O of families of context-lattice pairs

So far, we have only considered one context independently from the others. We now consider
relational concept analysis in its entirety.

RCA deals with families of contexts. Its elements are thus simple vectors of the pairs
generated by each context. These vectors will be considered as sets indexed by X. All
provided definitions can be applied to indexed families of context-lattice pairs, the order
between them will be the product of the piece-wise orders. The only important change is
that N will be frozen to the set of concept names in all the different contexts in K0.

The input of RCA is given by a family of contexts: K0 = {K0
x}x∈X , a set R of relations

between the objects of these contexts, and a set Ω of relational scaling operations. From this,
it is possible to characterise the space OK0,R,Ω associated with RCA by the direct product
of the sets of context-lattice pairs associated with each context.

Definition 7 (OK0,R,Ω). Given an indexed family of contexts K0 = {⟨Gx,M
0
x , I

0
x⟩}x∈X , a

set R of relations between the objects of these contexts, and a set Ω of relational scaling
operations, the space OK0,R,Ω of indexed families of context-lattice pairs is:

OK0,R,Ω =
∏
x∈X

T
η∗(K0)
K0

x,R,Ω
.

As usual, OK0,R,Ω will simply be referred to as O.
This is well defined because the set of all possible concept extents across all contexts is

determined by the set of objects in the context. This permits us to name unambiguously
all the concepts in the family of concept lattices. In turn, since η∗(K0), R and Ω do not
change and I is determined by {Mx}x∈X (Property 1), this determines all attributes that
can occur in a scaled RCA context.

Contrary to RCA0 [Euzenat, 2021], the scaled attributes depend on R that makes the
connection from one context to another, e.g. from Tx to Tz. But since it is possible to
name concepts in the lattices generated by the scaled attributes according to their elements

22

The fixed-point semantics of relational concept analysis

in Gz, then, as soon as Gz is finite, the set of scalable attributes in Mx is finite and can be
established as DΩ,Rx,K0 from the beginning.

The previous notations can be extended:

T∗({Kx}x∈X) = {T(Kx)}x∈X = {⟨Kx,FCA(Kx)⟩}x∈X .

For any {Tx}x∈X ∈ OK0,R,Ω:

k({Tx}x∈X) = {k(Tx)}x∈X ,

l({Tx}x∈X) = {l(Tx)}x∈X ,

kz({Tx}x∈X) = k(Tz),

lz({Tx}x∈X) = l(Tz).

Finally, for any indexed family of context-lattice pairs O ∈ O, the family of lattices l(O)
is determined directly from k(O): l(O) = FCA∗(k(O)).

We can define ∧ and ∨ on OK0,R,Ω.

Definition 8 (Meet and join of families of context-lattice pairs). Given O = {Tx}x∈X ,
O′ = {T ′

x}x∈X ∈ OK0,R,Ω, O ∨O′ and O ∧O′ are defined as:

O ∨O′ = {Tx ∨ T ′
x}x∈X , (join)

O ∧O′ = {Tx ∧ T ′
x}x∈X . (meet)

The set of families of context-lattice pairs is once again closed by meet and join:

Property 9. ∀O,O′ ∈ ON
K0,R,Ω, O ∧O′ ∈ ON

K0,R,Ω and O ∨O′ ∈ ON
K0,R,Ω.

Proof. OK0,R,Ω is closed by meet and join because meet and join are the piecewise meet and

join of context-lattice pairs (Definition 8) and for each x ∈ X, T
η∗(K0)
K0

x,R,Ω
is closed by meet

and join (Property 7).

We also define the order between two objects by combining the previous definitions.

Definition 9 (Order). Given O = {Tx}x∈X , O′ = {T ′
x}x∈X ∈ OK0,R,Ω,

O ⪯ O′ if ∀x ∈ X,Tx ⪯ T ′
x.

Like before, we note O ≃ O′ if O ⪯ O′ and O′ ⪯ O, and again ≃ is =.
Property 8 can be generalised: the order between families of context-lattice pairs may

be reduced to the order between contexts (and ultimately the order between their sets of
attributes).

Property 10. ∀O,O′ ∈ OK0,R,Ω, if k(O) ⊆ k(O′) then O ⪯ O′.

Proof. k(O) ⊆ k(O′) means that ∀x ∈ X, kx(O) ⊆ kx(O
′) which is equivalent, by Property 8,

to ⟨kx(O), lx(O)⟩ ⪯ ⟨kx(O′), lx(O
′)⟩ and hence O ⪯ O′ (Definition 9).

Finally, the set OK0,R,Ω of families of context-lattice pairs is a complete lattice.

23

Jérôme Euzenat

Proposition 11. ⟨OK0,R,Ω,∨,∧⟩ is a complete lattice.

Proof. OK0,R,Ω is closed by meet and join (Property 9). The commutativity, associativity
and the absorption law of ∨ and ∧ ultimately rely on these properties holding for the
same operators on contexts. They are satisfied because these are properties of union and
intersection on sets. Hence, ⟨OK0,R,Ω,∨,∧⟩ is a lattice. It is complete because ∨ and ∧ are
well-defined (Definition 8) and ∀S ⊆ O, ∀O ∈ S,

∧
O′∈S O′ ⪯ O ⪯

∨
O′∈S O′ (due to the

completeness of powerset lattices which apply to those of attributes).

The set O of families of context-lattice pairs arguably contains all possible solutions
that can be returned by relational concept analysis. However, they have been defined on
independent contexts, taking into account the scalable attributes but not the coherence
between the considered concepts. This will now be achieved through specific functions.

5. A functional standpoint on RCA

Here we adopt a functional standpoint on operations on the space of families of context-
lattice pairs. We first define an expansion function EF ∗ which corresponds to the internal
operations of RCA (§5.1). We then consider the notion of support which eliminates potential
solutions referring to non-available concepts (§5.2). This allows us to define a contraction
function reducing the non-supported part of a family of context-lattice pairs (§5.3).

5.1 The expansion function EF ∗

The solutions are now characterised as elements of OK0,R,Ω. In the following, a function on
this set is defined to reformulate RCA. This is EF ∗

K0,R,Ω, the expansion function attached
to a relational context ⟨K0, R⟩ and a set Ω of scaling operations.

Definition 10 (Expansion function). Given a relational context ⟨K0, R⟩ and a set Ω of re-
lational scaling operations, the expansion function EF ∗

K0,R,Ω : OK0,R,Ω → OK0,R,Ω is defined
by:

EF ∗
K0,R,Ω(O) = T∗(σ∗

Ω(k(O), R, l(O))).

As previously, we will abbreviate EF ∗
K0,R,Ω as EF ∗.

This function is the basis of RCA: it covers scaling and the application of FCA∗ embedded
in the function T∗. Thus, the two steps (3) and (2) of the RCA algorithm (Section 2.4.2)
have been merged into one.

A family of context-lattice pairs is called saturated if it is not possible to scale new
relational attributes in any of its contexts.

Definition 11 (Saturated family of context-lattice pairs). A family of context-lattice pairs
O ∈ O is saturated if ∀x ∈ X, kx(O) = σΩ(kx(O), R, l(O)).

EF ∗ is an extensive and monotone internal operation for O:

Property 12 (EF ∗ is internal to O). ∀O ∈ O, EF ∗(O) ∈ O.

24

The fixed-point semantics of relational concept analysis

Proof. ∀x ∈ X, σΩ(kx(O), R, l(O)) ∈ K
η∗(K0)
K0

x,R,Ω
because σΩ only scales attributes in DΩ,Rx,K0 .

Thus, T(σΩ(kx(O), R, l(O))) ∈ T
η∗(K0)
K0

x,R,Ω
. Hence, EF ∗(O) = {T(σΩ(kx(O), R, l(O)))}x∈X ∈

OK0
x,R,Ω (Definition 7).

Property 13 (EF ∗ is extensive and monotone). The function EF ∗ attached to a relational
context and a set of scaling operations satisfies:

O ⪯ EF ∗(O), (Extensivity)
O ⪯ O′ ⇒ EF ∗(O) ⪯ EF ∗(O′). (Monotony)

Proof. Extensivity holds because EF ∗ can only add to k(O) attributes scaled from l(O),
hence ∀x ∈ X, kx(O) ⊆ kx(EF ∗(O)). Thus, by Property 10, O ⪯ EF ∗(O). Monotony holds
because O ⪯ O′ means that ∀x ∈ X, lx(O) ⪯ lx(O

′) and kx(O) ⊆ kx(O
′). The former

entails that ∀x ∈ X, η(lx(O)) ⊆ η(lx(O
′)) and consequently, that DΩ,Rx,l(O) ⊆ DΩ,Rx,l(O′).

A smaller context (kx(O)) is extended by a smaller set of attributes (DΩ,Rx,l(O)), thus
kx(EF ∗(O)) ⊆ kx(EF ∗(O′)). Hence, by Property 10, EF ∗(O) ⪯ EF ∗(O′).

5.2 Self-supported lattices

In a family of context-lattice pairs O, there may be a context k(Ox) containing attributes
which refer to concepts non existing in l(O). Such an attribute, e.g. ∃r.c, belonging to
k(Ox) may belong to DΩ,Rx,K0 and be well-defined by the incidence relation, but c may not
be a concept of l(O). This is illustrated by Example 7.

Example 7 (Non self-supported families of context-lattice pairs). Figure 6 (p.16) shows a
familly of contexts {K#

3 ,K#
4 } and the associated family of concept lattices {L#

3 , L
#
4 } that

could be a solution for the example of Section 3.2 as it belongs to O{∃},{p,q},{K0
3 ,K

0
4}. How-

ever, this family is not self-supported because the context K#
3 (and thus concept A) uses the

attribute ∃p.C which refers to a concept (C) not present in L#
4 and similarly for ∃q.B in

context K#
4 .

A family of context-lattice pairs in O containing such attributes will see them preserved
by EF ∗ which only extends the contexts. This is not the expected result: concepts referred
to by attributes are expected to exist in the corresponding lattice.

One may consider identifying such attributes and forbidding them. However, support
is contextual: a supported attribute in a large family of context-lattice pairs may not be
supported in a smaller one.

In order to define acceptable solutions for RCA, we introduce the notion of context
supported by a family of concept lattices, i.e. those contexts whose relational attributes
only refer to concepts in the lattices.

Definition 12 (Supported context). A context ⟨Gx,Mx, Ix⟩ is supported by a family of
indexed lattices {Lz}z∈X , with respect to a set R of relations, if ∀ς(r, c) ∈Mx, r ∈ Rx,z and
c ∈ Lz.

By extension, an indexed family of context-lattice pairs is said self-supported if each
context of the family is supported by the family lattices. The support of a single context
may use several lattices of the family (l(O)).

25

Jérôme Euzenat

Definition 13 (Self-supported families of context-lattice pairs). A family of context-lattice
pairs O ∈ O is self-supported, with respect to a set R of relations, if ∀x ∈ X, kx(O) is
supported by l(O), with respect to R.

The definition of self-supported families of context-lattice pairs does not provide a direct
way to transform a non self-supported family into a self-supported one. A possible way to
solve this problem consists of extracting only the attributes currently in the lattice and to
apply FCA to the resulting context.

For that purpose, we introduce a filtering or purging function π∗ which suppresses from
the contexts (κ(Lx)) induced by the lattices Lx in L those attributes non supported by L:

Definition 14 (Purging function). The function π∗
K0,R,Ω :

∏
x∈X LK0

x,R,Ω →
∏

x∈X KK0
x,R,Ω

returns the family of contexts reduced of those attributes not present in a family of lattices:

π∗
K0,R,Ω(L) = {πK0,R,Ω(Lx, L)}x∈X

with

πK0,R,Ω(Lx, L) = K
⟨R,L⟩
−(DΩ,Rx,K0)\DΩ,Rx,L)

(κ(Lx)).

When unambiguous, we refer to πK0,R,Ω (resp. π∗
K0,R,Ω) as π (resp. π∗). This extends

the purging function of [Euzenat, 2021]. The purging function only restricts the sets of
possible contexts and does not expand them.

π and σ are not inverse functions: in particular, σ greatly depends on Ω and R to decide
which attributes to scale, through π simply suppresses attributes non supported by the
lattices, independently from Ω, which however determines the attribute language.

π∗ can be used to determine if a family of context-lattice pairs is self-supported:

Property 14. O is self-supported if and only if k(O) = π∗(l(O)).

Proof. O is self-supported means that ∀ x ∈ X, kx(O) is supported by l(O) (Defini-
tion 13) which means that, in kx(O), there is no attribute built from concepts out of
l(O), i.e. not belonging to DΩ,Rx,l(O). By Definition 14, this is equivalent to having
∀x ∈ X, π(lx(O), l(O)) = κ(lx(O)). However, by Property 3, kx(O) = κ(lx(O)), thus
kx(O) = π(lx(O), l(O)) and then k(O) = π∗(l(O)).

Like the scaling function, the purging function, is only one step: it suppresses currently
unsupported attributes, but this may lead to less concepts to be generated by FCA, and
thus to other non-supported attributes. Hence, it has to be iterated.

We introduce a contraction function, PQ∗
K0,R,Ω, attached to a relational context ⟨K0, R⟩

and a set Ω of scaling operations, which suppresses non-supported attributes and whose
closure yields self-supported families of context-lattice pairs.

5.3 The contraction function PQ∗

Similarly to EF ∗
K0,R,Ω, it is possible to define PQ∗

K0,R,Ω the contraction function attached
to a relational context ⟨K0, R⟩ and a set Ω of scaling operations.

26

The fixed-point semantics of relational concept analysis

Definition 15 (Contraction function). Given a relational context ⟨K0, R⟩ and a set Ω of
relational scaling operations, the contraction function PQ∗

K0,R,Ω : OK0,R,Ω → OK0,R,Ω is
defined by:

PQ∗
K0,R,Ω(O) = T∗(π∗

K0,R,Ω(l(O))).

As previously, we will abbreviate PQ∗
K0,R,Ω as PQ∗.

PQ∗ is an anti-extensive and monotone internal operation for O:

Property 15 (PQ∗ is internal to O). ∀O ∈ O, PQ∗(O) ∈ O.

Proof. PQ∗(O) = T∗(π∗(l(O))) = T∗({π(lx(O), l(O))}x∈X) = {T(π(lx(O), l(O)))}x∈X . So,
PQ∗(O) ∈ O if π(lx(O), l(O)) ∈ K

η∗(K0)
K0

x,R,Ω
(Definition 7). This is the case because (i) K

η∗(K0)
K0

x,R,Ω

contains all contexts extending K0
x with attributes from DΩ,Rx,K0 , (ii) kx(O) ∈ K

η∗(K0)
K0

x,R,Ω
,

and (iii) π only suppresses attributes from kx(O) preserving those of K0
x.

Property 16 (PQ∗ is anti-extensive and monotone). The function PQ∗ attached to a re-
lational context and a set of scaling operations satisfies:

PQ∗(O) ⪯ O, (Anti-extensivity)
O ⪯ O′ ⇒ PQ∗(O) ⪯ PQ∗(O′). (Monotony)

Proof. Anti-extensivity holds because PQ∗ can only suppress from k(O) attributes not sup-
ported by l(O), hence ∀x ∈ X, kx(PQ∗(O)) ⊆ kx(O). Thus, by Property 10, PQ∗(O) ⪯ O.
Monotony holds because O ⪯ O′ means that ∀x ∈ X, kx(O) ⊆ kx(O

′) and lx(O) ⪯ lx(O
′).

This entails that η∗(l(O)) ⊆ η∗(l(O′)) and thus, ∀x ∈ X, DΩ,Rx,l(O) ⊆ DΩ,Rx,l(O′). Be-
cause PQ∗(O) suppresses from kx(O) attributes not in M0

x ∪ DΩ,Rx,l(O), this entails that
kx(PQ∗(O)) ⊆ kx(PQ∗(O′)). Hence, by Property 10, PQ∗(O) ⪯ PQ∗(O′).

6. The fixed points of EF ∗ and PQ∗

We end up with two functions, EF ∗ and PQ∗, over families of context-lattice pairs, the
former extensive and the latter anti-extensive. We consider the fixed points of these functions
as saturated and self-supported families of context-lattice pairs (§6.1). Closure functions are
defined which return the smallest subsuming and greatest subsumed fixed points of a family
(§6.2). This allows us to precisely define acceptable solutions as those families of context-
lattice pairs which are fixed points for both functions (§6.3).

6.1 Fixed points

RCA is a world of fixed points, hence it is easy to get lost among the various fixed points
involved:
– In description logics, which RCA targets, the semantics of concepts is given by (least)

fixed points when circularities occur [Nebel, 1990];
– FCA’s goal is to compute fixed points: concepts are the result of a closure operation

which is also a fixed point [Belohlávek, 2008];
– finally, the RCA result is the fixed point of the function that grows a family of concept

lattices from the previous one through scaling.

27

Jérôme Euzenat

The present work is concerned with the fixed points of the latter function taking the others
into account.

Given EF ∗ and PQ∗, it is possible to define their sets of fixed points, i.e. the sets of
families of context-lattice pairs closed for EF ∗ and PQ∗, as:

Definition 16 (Fixed points). A family of context-lattice pairs O ∈ O is a fixed point for a
function ϕ, if ϕ(O) ≃ O. We call fp(ϕ) the set of fixed points for ϕ.

This characterises fp(EF ∗) and fp(PQ∗).
This may be directly expressed

Property 17. O ∈ fp(EF ∗) iff σ∗
Ω(k(O), R, l(O)) = k(O).

Proof. O = T∗(k(O)) and EF ∗(O) = T∗(σ∗
Ω(k(O), R, l(O))). (⇐) If σ∗

Ω(k(O), R, l(O)) =
k(O), then EF ∗(O) = O and thus O is a fixed point of EF ∗. (⇒) If σ∗

Ω(k(O), R, l(O)) ̸=
k(O), then EF ∗(O) ̸= O, so it is not a fixed point.

Property 18. O ∈ fp(PQ∗) iff π∗(l(O)) = k(O).

Proof. O = T∗(k(O)) and PQ∗(O) = T∗(π∗(l(O))). (⇐) If π∗(l(O)) = k(O), then PQ∗(O)
= O and thus is a fixed point of PQ∗. (⇒) If π∗(l(O)) ̸= k(O), then PQ∗(O) ̸= O, so it is
not a fixed point.

Since O is a complete lattice (Proposition 11) and EF ∗ and PQ∗ are order-preserving
(or monotone) on O (Properties 13 and 16), then we can apply the Knaster-Tarski theorem.

Theorem (Knaster-Tarski theorem [Tarski, 1955]). Let O be a complete lattice and let
ϕ : O → O be an order-preserving function. Then the set of fixed points of ϕ in O is also a
complete lattice.

Thus, ⟨fp(EF ∗),⪯⟩ and ⟨fp(PQ∗),⪯⟩ are complete lattices. This warrants that there
exists least and greatest fixed points of EF ∗ and PQ∗ in O. For such a function ϕ, operating
on the set O, their least and greatest fixed points are:

lfp(ϕ) =
∧

O∈fp(ϕ)

O and gfp(ϕ) =
∨

O∈fp(ϕ)

O.

The fixed points of these two functions may be further characterised. The smallest fixed
point of PQ∗ is the smallest element of O which cannot be further reduced:

Property 19 (Least fixed point of PQ∗).

lfp(PQ∗) = T∗(K0).

Proof. T∗(π∗(FCA∗(K0))) = T∗(K0) because (a) ∀x ∈ X, κ(FCA(K0
x)) = K0

x (Property 3),
and (b) π(FCA(K0

x),FCA
∗(K0)) = K0

x as it is not possible to suppress attributes from
K0

x which, being an initial (unscaled) context, does not comprise any attribute referring
to concepts. Thus, PQ∗(T∗(K0)) = T∗(π∗(FCA∗(K0))) = T∗(K0). Moreover, ∀O ∈ O,
T∗(K0) ⪯ O. Hence, T∗(K0) is a fixed point of PQ∗ and all other fixed points are greater.

28

The fixed-point semantics of relational concept analysis

The greatest fixed point of EF ∗ is the family that cannot be further extended (general-
ising Proposition 2 of [Euzenat, 2021]):

Property 20 (Greatest fixed point of EF ∗).

gfp(EF ∗
K0,R,Ω) = T∗({K⟨R,η∗(K0)⟩

+DΩ,Rx,K0
(K0

x)}x∈X).

Proof. This family of context-lattice pairs is the greatest element of O as ∀x ∈ X, the
context kx(O) contains all attributes of M0

x ∪DΩ,Rx,K0 and due to Property 10. It is also a
fixed point because EF ∗ is extensive (Property 13) and internal (Property 12).

6.2 Closure functions (EF ∗∞ and PQ∗∞)

EF ∗ and PQ∗ are not closure operations as they are not idempotent. However, with the
same arguments as [Rouane Hacène et al., 2013a], and in particular the finiteness of contexts
(see Section 2.4.3), it can be argued that their repeated application converges to a fixed point.

Property 21 (Stability of EF ∗). ∀O ∈ O, ∃n;EF ∗n(O) = EF ∗n+1(O).

Proof. EF ∗ can only increase the contexts when there are new concepts in lattices and
increase the lattices when contexts grow. However, the set of attributes that can increase
contexts, and the set of concepts that can be in lattices, is finite. Hence, at each step either
an attribute is added or n has been reached such that the family of context-lattice pairs is
the same. This is the same argument as that of [Rouane Hacène et al., 2013a].

This below is an extension of Proposition 5 of [Euzenat, 2021]:

Property 22 (Stability of PQ∗). ∀O ∈ O, ∃n;PQ∗n(O) = PQ∗n+1(O).

Proof. PQ∗ can only decrease the contexts and reduce lattices. Since these are finite (and
the decrease does not affect the attributes of K0), there exists a n at which the decrease
stops.

The finite application of EF ∗ and PQ∗ as many times as necessary, i.e. to the first
n satisfying Properties 21 and 22, are closure operations denoted by EF ∗∞ and PQ∗∞,
respectively.

Property 23. EF ∗∞ and PQ∗∞ are closures.

Proof. Since EF ∗ is extensive and monotone (Property 13), EF ∗∞ is also extensive and
monotone by transitivity of ⪯. In order to be a closure operation it has to be idempotent.
This is the case, because ∀O ∈ O, EF ∗∞(O) = EF ∗n(O) = EF ∗n+1(O) = EF ∗(EF ∗n(O)).
Since EF ∗n(O) = EF ∗(EF ∗n(O)), EF ∗ can be applied n times, leading to EF ∗∞(O) =
EF ∗n(O) = EF ∗n(EF ∗n(O)) = EF ∗∞(EF ∗∞(O)).

The same can be obtained from PQ∗, albeit anti-extensive (Property 16).

In addition, they are extrema of the sets of fixed points of their respective functions.

29

Jérôme Euzenat

Property 24 (EF ∗ and PQ∗ return the smallest subsuming and greatest subsumed fixed
points). ∀O ∈ O,

EF ∗∞(O) = min
⪯

(fp(EF ∗) ∩ {O′|O ⪯ O′}),

PQ∗∞(O) = max
⪯

(fp(PQ∗) ∩ {O′|O′ ⪯ O}).

Proof. EF ∗∞(O) ∈ fp(EF ∗) and PQ∗∞(O) ∈ fp(PQ∗) as they satisfy Definition 16. More-
over, EF ∗∞(O) ∈ {O′|O ⪯ O′} and PQ∗∞(O) ∈ {O′|O′ ⪯ O} as EF ∗ and PQ∗ are
respectively extensive and anti-extensive and monotone (Property 13 and 16). There can-
not be O′ ∈ fp(EF ∗) ∩ {O′|O ⪯ O′} such that O′ ≺ EF ∗∞(O) because otherwise k(O′) ⊂
k(EF ∗∞(O)) and k(O) ⊆ k(O′). In other terms, O′ contains all attributes of O but not
all attributes of EF ∗∞(O). But, EF ∗∞ only adds scalable attributes and k(EF ∗∞(O))
contains only attributes scalable from O. Hence, O′ is not closed for EF ∗ (O′ ̸∈ fp(EF ∗)).

The same holds for PQ∗∞(O), there cannot be O′ ∈ fp(PQ∗) ∩ {O′|O′ ⪯ O} such that
PQ∗∞(O) ≺ O′ because otherwise k(O′) ⊆ k(O). In other terms, all attributes of O′ are
in O but O′ contains all attributes of PQ∗∞(O). However, PQ∗∞ only suppress attributes
not supported by those of O. Hence, O′ is not closed for PQ∗ (O′ ̸∈ fp(PQ∗)), as it would
contain non-supported attributes.

The respective relations of these various objects can be summarised by the following
property:

Property 25. ∀O ∈ O,

lfp(PQ∗) ⪯ PQ∗∞(O) ⪯ PQ∗(O) ⪯ O ⪯ EF ∗(O) ⪯ EF ∗∞(O) ⪯ gfp(EF ∗).

Proof. All the inner equations are consequences of the extensivity of EF ∗ (Property 13) and
anti-extensivity of PQ∗ (Property 16). The outer ones owe to the fact that the two closure
operations are fixed points (Property 24), thus they are subsumed by, resp. subsuming,
their greatest, resp. least, fixed point.

6.3 Acceptable solutions

What is called acceptable solutions in Section 3 is now rephrased in Definition 17.

Definition 17 (Acceptable family of context-lattice pairs). Given a family K0 of contexts,
a set Ω of scaling operations and a set R of relations, a family of context-lattice pairs O is
acceptable if
– O ∈ OK0,R,Ω, (well-formedness)
– O is saturated, (saturation)
– O is self-supported. (self-support)

This can be characterised as those families of context-lattice pairs which are fixed points
of both EF ∗ and PQ∗.

The fixed points of EF ∗ are exactly those saturated elements of O:

Property 26 (Fixed points of EF ∗ are saturated). ∀O ∈ O, O is saturated iff O ∈ fp(EF ∗).

30

The fixed-point semantics of relational concept analysis

Proof. O ∈ fp(EF ∗) means that k(O) = σ∗
Ω(k(O), R, l(O)) (Property 17) which is equivalent

to ∀x ∈ X, kx(O) = σΩ(kx(O), R, l(O)) which, by Definition 11, means that O is saturated.

The fixed points of PQ∗ are exactly those self-supported objects in O:

Property 27 (Fixed points of PQ∗ are self-supported). ∀O ∈ O, O is self-supported iff
O ∈ fp(PQ∗).

Proof. O is self-supported iff k(O) = π∗(l(O)) (Property 14) which is equivalent to O =
PQ∗(O) (Property 18), i.e. O ∈ fp(PQ∗).

Hence, the set of acceptable solutions is fp(EF ∗) ∩ fp(PQ∗).

Proposition 28 (Acceptable solutions are fixed points of both EF ∗ and PQ∗). Given a
family K0 of contexts, a set Ω of scaling operations and a set R of relations, a family of
context-lattice pairs O is acceptable iff O ∈ OK0,R,Ω and O ∈ fp(EF ∗) ∩ fp(PQ∗).

Proof. O is well-formed as it belongs to OK0,R,Ω. It is saturated if and only if it belongs
to fp(EF ∗) (Property 26) and it is self-supported if and only if it belongs to fp(PQ∗)
(Property 27). Hence, O is acceptable (Definition 17).

Example 8 illustrates this:

Example 8 (Acceptable solutions). In the example of Section 3.2, it can be checked that
the given solutions belong to the expected fixed points:

EF ∗({⟨K1
3 , L

1
3⟩, ⟨K1

4 , L
1
4⟩}) = {⟨K1

3 , L
1
3⟩, ⟨K1

4 , L
1
4⟩} = PQ∗({⟨K1

3 , L
1
3⟩, ⟨K1

4 , L
1
4⟩}),

EF ∗({⟨K⋆
3 , L

⋆
3⟩, ⟨K⋆

4 , L
⋆
4⟩}) = {⟨K⋆

3 , L
⋆
3⟩, ⟨K⋆

4 , L
⋆
4⟩} = PQ∗({⟨K⋆

3 , L
⋆
3⟩, ⟨K⋆

4 , L
⋆
4⟩}),

EF ∗({⟨K ′
3, L

′
3⟩, ⟨K ′

4, L
′
4⟩}) = {⟨K ′

3, L
′
3⟩, ⟨K ′

4, L
′
4⟩} = PQ∗({⟨K ′

3, L
′
3⟩, ⟨K ′

4, L
′
4⟩}),

and

EF ∗({⟨K ′′
3 , L

′′
3⟩, ⟨K ′′

4 , L
′′
4⟩}) = {⟨K ′′

3 , L
′′
3⟩, ⟨K ′′

4 , L
′′
4⟩} = PQ∗({⟨K ′′

3 , L
′′
3⟩, ⟨K ′′

4 , L
′′
4⟩}).

and none of the other elements of O as displayed in Figure 9 (p.38).

In lattice theory, saturation and self-support would have been easily called closedness.
The terms saturation and self-support have been chosen in order to differentiate them.

7. The fixed-point semantics of RCA

Now that the acceptable solutions have been characterised structurally and functionally, we
can answer our initial question and define the semantics of RCA. RCA returns the smallest
acceptable solution. It is also the least fixed point of the EF ∗ function (§7.1). Another
interesting operation is the one that generates the greatest acceptable solution, which is also
the greatest fixed point of PQ∗ (§7.2). It is also worth considering obtaining the whole set
fp(EF ∗) ∩ fp(PQ∗). Section 7.3 investigates the structure of [lfp(EF ∗), gfp(PQ∗)] and its
relation with fp(EF ∗)∩ fp(PQ∗) towards that goal. It provides various results that may be
exploited to develop efficient algorithms.

31

Jérôme Euzenat

7.1 Classical RCA computes EF ∗’s least fixed point

RCA as it has been defined in Section 2.4.2 (p.11) may be redefined as

RCAΩ(K
0, R) = l(EF ∗∞

K0,R,Ω(T
∗(K0)))

i.e. RCA iterates EF ∗ from T∗(K0) until reaching a fixed point, and ultimately the corre-
sponding lattices are returned.

It thus seems that RCA returns a fixed point of EF ∗. Hence the question: which fixed
point is returned by RCA’s well-grounded semantics? This is the least fixed point.

Proposition 29 (The RCA algorithm computes the least fixed point of EF ∗). Given EF ∗

the expansion function associated to K0, R and Ω,

RCAΩ(K
0, R) = l(lfp(EF ∗

K0,R,Ω)).

Proof. T∗(K0) ∈ O, hence EF ∗∞(T∗(K0)) ∈ O (by Property 12). Moreover, EF ∗∞(T∗(K0))
= min⪯(fp(EF ∗) ∩ {O′ | T∗(K0) ⪯ O′}) (Property 24). But ∀O′ ∈ O, T∗(K0) ⪯ O′, hence
EF ∗∞(T∗(K0)) = min⪯(fp(EF ∗)). Thus, EF ∗∞

K0,R,Ω(T
∗(K0)) is a fixed point more specific

than all fixed points: it is the least fixed point.
RCAΩ(K

0, R) = l(EF ∗∞
K0,R,Ω(T

∗(K0))) returns the family of lattices associated with the
least fixed point of EF ∗

K0,R,Ω.

7.2 Greatest fixed-point (of PQ∗) semantics

It is possible to define RCA as returning the greatest acceptable solution. The greatest fixed
point of EF ∗ (Property 20) is not necessarily an acceptable solution because it may not be
self-supported. Said otherwise, it does not belong to fp(EF ∗)∩ fp(PQ∗) because it is not a
fixed point for PQ∗.

Alternatively, a dual procedure RCA may be defined as:

RCAΩ(K
0, R) = l(PQ∗∞

K0,R,Ω(T
∗({K⟨R,η∗(K0)⟩

+DΩ,Rx,K0
(K0

x)}x∈X)))

and it can be characterised analogously as the greatest fixed point of PQ∗
K0,R,Ω.

Proposition 30 (RCA determines the greatest fixed point of PQ∗). Given PQ∗ the con-
traction function associated to K0, R and Ω,

RCAΩ(K
0, R) = l(gfp(PQ∗

K0,R,Ω)).

Proof. O∞ = T∗({K⟨R,η∗(K0)⟩
+DΩ,Rx,K0

(K0
x)}x∈X) ∈ O, hence PQ∗∞

K0,R,Ω(O
∞) ∈ O (by Property 15).

Moreover, PQ∗∞(O∞) = max⪯(fp(PQ∗) ∩ {O′|O′ ⪯ O∞}) (Property 24). But ∀O′ ∈ O,
O′ ⪯ O∞, hence PQ∗∞(O∞) = max⪯(fp(PQ∗)). Thus, PQ∗∞

K0,R,Ω(O
∞) is a fixed point

more general than all fixed points: it is the greatest fixed point.
RCAΩ(K

0, R) = l(PQ∗∞
K0,R,Ω(O

∞)) returns the family of lattices associated with the
greatest fixed point of PQ∗

K0,R,Ω.

32

The fixed-point semantics of relational concept analysis

In order to find gfp(PQ∗), the process starts with T∗({K⟨R,η∗(K0)⟩
+DΩ,Rx,K0

(K0
x)}x∈X), the largest

family of context-lattice pairs, and iterates the application of PQ∗, i.e. the two operations
π∗ and FCA∗, until reaching a fixed point, i.e. reaching n such that On+1 = On.

Thus, the RCA algorithm proceeds in the following way:
1. Initial contexts: t← 0; {⟨Gx,M

t
x, I

t
x⟩}x∈X ← {K

⟨R,η∗(K0)⟩
+DΩ,Rx,K0

(K0
x)}x∈X

2. {Lt
x}x∈X ← FCA∗({⟨Gx,M

t
x, I

t
x⟩}x∈X) (or, for each context, ⟨Gx,M

t
x, I

t
x⟩ the correspond-

ing concept lattice Lt
x = FCA(⟨Gx,M

t
x, I

t
x⟩) is created using FCA).

3. {⟨Gx,M
t+1
x , It+1

x ⟩}x∈X ← π∗({Lt
x}x∈X) (i.e. suppressing from Kt

x each attribute in Lt
x

referring through a relation r ∈ Rx,z to a concept cz not appearing in Lt
z).

4. If ∃x ∈ X;M t+1
x ̸= M t

x (purging has occurred), then t← t+ 1; go to Step 2.
5. Return: {Lt

x}x∈X .
This algorithm is the dual of the RCA procedure.

Example 9 shows how this is processed.

Example 9 (Greatest fixed-point semantics). In the cases presented in Section 3.1 and 3.2,
the greatest (or maximum) elements {⟨K⋆

1 , L
⋆
1⟩, ⟨K⋆

2 , L
⋆
2⟩} and {⟨K⋆

3 , L
⋆
3⟩, ⟨K⋆

4 , L
⋆
4⟩} of O are

fixed points for both EF ∗ and PQ∗. Instead, consider the example of Section 3.1 in which
the relation p is changed to:

p d e f

a × ×
b × ×
c ×

q a b c

d ×
e ×
f ×

q remaining the same. The effect of changing p is to make a and b non distinguishable and
reduce the sets of supported concepts.

Then (Property 20), gfp(EF ∗) = T∗({K⟨R,η∗(K0)⟩
+DΩ,Rx,K0

(K0
x)}x∈{1,2}) = {⟨K⊤

1 , L⊤
1 ⟩, ⟨K⊤

2 , L⊤
2 ⟩}

is presented below:

K⊤
1 m1 m2 m3 ∃p

.D
E
F

∃p
.D

E

∃p
.D

F

∃p
.E

F

∃p
.D

∃p
.E

∃p
.F

a × × × × × × ×
b × × × × × × ×
c × × × × × ×

K⊤
2 n1 n2 ∃q

.A
B
C

∃q
.A

B

∃q
.A

C

∃q
.B

C

∃q
.A

∃q
.B

∃q
.C

d × × × × ×
e × × × × × ×
f × × × ×

∃p.DEF, ∃p.DF, ∃p.EF

m2, ∃p.D,∃p.E,∃p.DE

a, b
m1,m3, ∃p.F

c

ABC

AB C

⊥L⊤
1 :

∃p.ABC

n1,∃p.AB ∃p.AC ∃p.BC

∃p.A
d

n2, ∃p.B
e

∃p.C
f

DEF

DE DF EF

D E F

⊥L⊤
2 :

33

Jérôme Euzenat

It can be checked that {⟨K⊤
1 , L⊤

1 ⟩, ⟨K⊤
2 , L⊤

2 ⟩} is a fixed point for EF ∗: no additional
attribute can be scaled. On the contrary, it is not a fixed point for PQ∗ which can be applied
to it.

In a first application, it will purge ⟨K⊤
2 , L⊤

2 ⟩ to:

K†
2 n1 n2 ∃q

.A
B
C

∃q
.A

B

∃q
.C

d × × ×
e × × × ×
f × ×

∃p.ABC

n1, ∃p.AB

d

∃q.C
f

n2

e

DEF

DE

E F

⊥L†
2:

A second application will purge ⟨K⊤
1 , L⊤

1 ⟩ with respect to ⟨K†
2, L

†
2⟩:

K†
1 m1 m2 m3 ∃p

.D
E
F

∃p
.D

E

∃p
.E

∃p
.F

a × × × ×
b × × × ×
c × × × ×

∃p.DEF

m2, ∃p.E,∃p.DE

a, b
m1,m3, ∃p.F

c

ABC

AB C

⊥L†
1:

It can be checked that {⟨K†
1, L

†
1⟩, ⟨K

†
2, L

†
2⟩} is a fixed point for PQ∗, but also for EF ∗.

It may be interesting, for some applications to check if there is only one acceptable
solution. This can easily be characterised by:

Proposition 31. lfp(EF ∗
K0,R,Ω) = gfp(PQ∗

K0,R,Ω) iff |fp(EF ∗
K0,R,Ω) ∩ fp(PQ∗

K0,R,Ω)| = 1.

The proof of this proposition is given in the next section (7.3) as it relies on further
results.

This can be tested using RCA and RCA.
FCA can be described as RCA with R = ∅. In this case, ∀x ∈ X, DΩ,Rx,K0 = ∅. Thus,

O = {T∗(K0)} = {⟨K0,FCA(K0)⟩} and fp(EF ∗) = fp(PQ∗) = {T∗(K0)}. Hence,

RCAΩ(K
0,∅) = RCAΩ(K

0,∅) = FCA(K0).

7.3 The structure of fixed points

Besides obtaining the least fixed point of EF ∗ (RCAΩ) or the greatest fixed point of PQ∗

(RCAΩ), an interesting problem is to obtain all acceptable solutions, i.e. those families of
context-lattice pairs belonging to the fixed points of both functions (fp(EF ∗) ∩ fp(PQ∗)).

A naive algorithm for this consists in enumerating all elements of O and testing if they
are fixed points. This would not be very efficient. One way to try to improve on this

34

The fixed-point semantics of relational concept analysis

situation is to understand the structure of the set of fixed points and its relation with the
two functions and their closures. Figure 8 illustrates the structure of O and how EF ∗∞ and
PQ∗∞ and their composition traverse this structure.

An interesting property of the functions EF ∗ and PQ∗ is that they preserve each other
stability:

Property 32 (EF ∗ is internal to fp(PQ∗)). ∀O ∈ fp(PQ∗), EF ∗(O) ∈ fp(PQ∗).

Proof. If O ∈ fp(PQ∗), all attributes in intents of l(O) are supported by concepts in l(O)
(Property 27 and Definition 13). By Property 13, O ⪯ EF ∗(O), so these concepts are still
in l(EF ∗(O)). Moreover, EF ∗ only adds to k(O) attributes which are supported by l(O)
(they only refer to concepts in l(O)). Hence, the attributes in k(EF ∗(O)) and those scaled
by σΩ are still supported by l(EF ∗(O)).

Property 33 (PQ∗ is internal to fp(EF ∗)). ∀O ∈ fp(EF ∗), PQ∗(O) ∈ fp(EF ∗).

Proof. If O ∈ fp(EF ∗), this means that EF ∗(O) = O and, in particular, that σ∗
Ω does not

scale new attributes based on the concepts in l(O). By Property 16, PQ∗(O) ⪯ O, so that
l(PQ∗(O)) does not contain more concepts than l(O), then σ∗

Ω cannot scale new attributes
(σ∗

Ω(k(PQ∗(O)), R, l(PQ∗(O))) ⊆ σ∗
Ω(k(O), R, l(O)) = ∅). Hence, PQ∗(O) ∈ fp(EF ∗).

This shows that fp(EF ∗)∩ fp(PQ∗) ̸= ∅: acceptable solutions always exist. In addition,
the closure operations associated with the two functions preserve their extrema.

Property 34. PQ∗∞(gfp(EF ∗)) = gfp(PQ∗) and EF ∗∞(lfp(PQ∗)) = lfp(EF ∗).

Proof. ∀O ∈ O, O ⪯ gfp(EF ∗) (from Property 25), and PQ∗∞ is order preserving (Prop-
erty 23), thus PQ∗∞(O) ⪯ PQ∗∞(gfp(EF ∗)). Hence, ∀O ∈ fp(PQ∗), O ⪯ PQ∗∞(gfp(EF ∗)).
Moreover, PQ∗∞(gfp(EF ∗)) ∈ fp(PQ∗), thus PQ∗∞(gfp(EF ∗)) = gfp(PQ∗).

Similarly, ∀O ∈ O, lfp(PQ∗) ⪯ O (Property 25), and EF ∗∞ is order preserving (Prop-
erty 23), thus EF ∗∞(lfp(PQ∗)) ⪯ EF ∗∞(O). Hence, ∀O ∈ fp(EF ∗), EF ∗∞(lfp(PQ∗)) ⪯ O.
Moreover, EF ∗∞(lfp(PQ∗)) ∈ fp(EF ∗), therefore EF ∗∞(lfp(PQ∗)) = lfp(EF ∗).

Proposition 35 complements Property 25 for elements of fp(EF ∗) ∩ fp(PQ∗). The ele-
ments of fp(EF ∗)∩ fp(PQ∗) thus belong to the interval [lfp(EF ∗) gfp(PQ∗)] (which is more
restricted than [lfp(PQ∗) gfp(EF ∗)], see Figure 8).

Proposition 35. ∀O ∈ fp(EF ∗) ∩ fp(PQ∗),

lfp(PQ∗) ⪯ lfp(EF ∗) ⪯ O ⪯ gfp(PQ∗) ⪯ gfp(EF ∗).

Proof. By Property 34, PQ∗∞(gfp(EF ∗)) = gfp(PQ∗), but PQ∗(O) ⪯ O (Property 16) and
PQ∗∞(O) ⪯ PQ∗(O) (Property 25), thus gfp(PQ∗) = PQ∗∞(gfp(EF ∗)) ⪯ PQ∗(gfp(EF ∗))
⪯ gfp(EF ∗). Moreover, by Property 34, EF ∗∞(lfp(PQ∗)) = lfp(EF ∗), but O ⪯ EF ∗(O)
(Property 13) and EF ∗(O) ⪯ EF ∗∞(O) (Property 25), thus lfp(PQ∗) ⪯ EF ∗(lfp(PQ∗)) ⪯
EF ∗∞(lfp(PQ∗)) = lfp(EF ∗). Finally, O ∈ fp(EF ∗) ∩ fp(PQ∗) entails that lfp(EF ∗) ⪯ O
and O ⪯ gfp(PQ∗).

It is now possible to prove Proposition 31:

35

Jérôme Euzenat

gfp(EF ∗)

O

fp(EF ∗) =
Im(EF ∗∞)

O
fp(PQ∗) =
Im(PQ∗∞)

O

T∗(K0) = lfp(PQ∗)

lfp(EF ∗)

fp(EF ∗)

fp(PQ∗)

gfp(PQ∗)

O

EF ∗∞

PQ∗∞ 34

EF ∗∞40

PQ∗∞ 40

EF ∗∞

PQ∗∞

EF ∗∞32

PQ∗∞ 33

EF ∗∞34

PQ∗∞

EF ∗∞40

PQ∗∞ 40
4135

Figure 8: Illustration of Properties 32, 33, 35, 34, 36, 40 and 41. The figure displays four
times O and the images of gfp(EF ∗) (red), a random family of context-lattice
pairs (blue) and lfp(PQ∗) = T∗(K0) (green) through PQ∗∞ (left) and EF ∗∞

(right). fp(EF ∗) is drawn in vertical lines; fp(PQ∗) in horizontal lines and the
grey area depicts the interval [lfp(EF ∗), gfp(PQ∗)].

36

The fixed-point semantics of relational concept analysis

Proof of Proposition 31. First, both lfp(EF ∗
K0,R,Ω) and gfp(PQ∗

K0,R,Ω) are among the ac-
ceptable solutions. Indeed, lfp(EF ∗) = EF ∗∞(lfp(PQ∗)) (Property 34), but lfp(PQ∗) ∈
fp(PQ∗) thus EF ∗∞(lfp(PQ∗)) ∈ fp(PQ∗) (Property 32), hence lfp(EF ∗) ∈ fp(PQ∗). The
same reasoning can be applied to gfp(PQ∗

K0,R,Ω) with Property 33.
⇒) Since all acceptable solutions are within the interval between both fixed points (Propo-
sition 35), if these are equal then the interval contains only one object which is the only
acceptable solution.
⇐) If there is only one acceptable solution, then lfp(EF ∗

K0,R,Ω) = gfp(PQ∗
K0,R,Ω).

Proposition 35 together with the preamble of the proof of Proposition 31 determine
that [lfp(EF ∗) gfp(PQ∗)] is the smallest interval in which fp(EF ∗) ∩ fp(PQ∗) is included
since its bounds are acceptable solutions. However, acceptable solutions do not cover the
whole interval: the converse of Proposition 35 does not hold in general as shown by the
counter-example 10.

Example 10 (Non coverage in RCA). In the example of Section 3.2, lfp(EF ∗) = {⟨K1
1 , L

1
1⟩,

⟨K1
2 , L

1
2⟩} and gfp(PQ∗) = {⟨K⋆

1 , L
⋆
1⟩, ⟨K⋆

2 , L
⋆
2⟩}. The family {⟨K#

1 , L#
1 ⟩, ⟨K

#
2 , L#

2 ⟩} of Fig-
ure 6 belongs to [lfp(EF ∗) gfp(PQ∗)], but not to fp(EF ∗)∩ fp(PQ∗) as mentioned in Exam-
ple 7. Figure 9 shows that 12 out of 16 elements of the interval are in this situation: only 4
belong to fp(EF ∗) ∩ fp(PQ∗).

This interval may be thought of as an approximation of the situation described by the
initial context K0. For some purposes, this may be sufficient. However, it may also be
interesting to navigate within the set fp(EF ∗) ∩ fp(PQ∗) of fixed points or to compute it.

In order to find the elements of fp(EF ∗)∩ fp(PQ∗), the closure of EF ∗ and PQ∗, EF ∗∞

and PQ∗∞, can be used as functions which maps elements of O into families of context-
lattice pairs in fp(EF ∗) and fp(PQ∗), respectively. Moreover, Properties 33 and 32 entail
that PQ∗∞ ◦EF ∗∞ and EF ∗∞ ◦PQ∗∞ map any element of O into an acceptable family of
context-lattice pairs in fp(EF ∗)∩ fp(PQ∗). Hence, the set of acceptable solutions are those
elements in the image of O by the composition of these two closure operations, in any order.

Property 36. Im(PQ∗∞ ◦ EF ∗∞) = fp(EF ∗) ∩ fp(PQ∗) = Im(EF ∗∞ ◦ PQ∗∞).

Proof. We show it for PQ∗∞ ◦ EF ∗∞, the other part is dual:
⊆ By definition, Im(PQ∗∞ ◦ EF ∗∞) ⊆ Im(PQ∗∞) = fp(PQ∗). Moreover, Im(EF ∗∞) =

fp(EF ∗), but by Property 33, if O ∈ fp(EF ∗), then PQ∗∞(O) ∈ fp(EF ∗). Hence,
Im(PQ∗∞ ◦ EF ∗∞) ⊆ fp(EF ∗) ∩ fp(PQ∗).

⊇ ∀O ∈ fp(PQ∗) ∩ fp(EF ∗), O ∈ fp(EF ∗), thus EF ∗∞(O) = O and O ∈ fp(PQ∗), thus
PQ∗∞(O) = O. Hence, O = PQ∗∞(EF ∗∞(O)) = PQ∗∞ ◦ EF ∗∞(O) ∈ Im(PQ∗∞ ◦
EF ∗∞) and consequently fp(EF ∗) ∩ fp(PQ∗) ⊆ Im(PQ∗∞ ◦ EF ∗∞).

In addition, these functions are monotone and idempotent.

Property 37. PQ∗∞ ◦ EF ∗∞ (resp. EF ∗∞ ◦ PQ∗∞) is order-preserving and idempotent:

∀O,O′ ∈ O, O ⪯ O′ ⇒ (PQ∗∞ ◦ EF ∗∞)(O) ⪯ (PQ∗∞ ◦ EF ∗∞)(O′),
(Monotony)

(PQ∗∞ ◦ EF ∗∞) ◦ (PQ∗∞ ◦ EF ∗∞)(O) = PQ∗∞ ◦ EF ∗∞(O). (Idempotence)

37

Jérôme Euzenat

AB

A B

⊥ L⋆
3, L

⋆
4

CD

C D

⊥

AB

A B

⊥

CD

C

AB

A B

⊥

CD

D

AB

A

CD

C D

⊥

AB

B

CD

C D

⊥

AB

A B

⊥

CD AB CD

C D

⊥

AB

A

CD

C

L′
3, L

′
4

AB

A

CD

D

L#
3 , L#

4

AB

B

CD

C

AB

B

CD

D

L′′
3 , L

′′
4

AB

A

CD AB

B

CD AB CD

C

AB CD

D

AB CD

L1
3, L

1
4

Figure 9: All the families of lattices belonging to [lfp(EF ∗) gfp(PQ∗)] in the example of
Section 3.2. Those in fp(EF ∗) ∩ fp(PQ∗) are within solid boxes. As usual, only
direct edges are displayed. Solid arrows show direct application of EF ∗ and dashed
arrows show direct application of PQ∗. Dotted arrows are order relations not
corresponding to EF ∗ or PQ∗ applications.

38

The fixed-point semantics of relational concept analysis

Proof. We prove it for PQ∗∞ ◦ EF ∗∞, the EF ∗∞ ◦ PQ∗∞ case is strictly dual.
Monotony is obtained as the combination of order-preservation of the two functions: O ⪯

O′, hence EF ∗∞(O) ⪯ EF ∗∞(O′), and thus PQ∗∞ ◦ EF ∗∞(O) ⪯ PQ∗∞ ◦ EF ∗∞(O′)
(applying Property 23 twice).

Idempotence is obtained from Property 36: ∀O ∈ O, PQ∗∞◦EF ∗∞(O) ∈ fp(EF ∗)∩fp(PQ∗),
hence PQ∗∞ ◦EF ∗∞(O) = O and PQ∗∞ ◦EF ∗∞ ◦PQ∗∞ ◦EF ∗∞(O) = O, thus PQ∗∞ ◦
EF ∗∞ ◦ PQ∗∞ ◦ EF ∗∞(O) = PQ∗∞ ◦ EF ∗∞(O).

The monotony of these functions entails that fp(EF ∗) ∩ fp(PQ∗) is a complete lattice:

Proposition 38. ⟨fp(EF ∗) ∩ fp(PQ∗),⪯⟩ is a complete sublattice of ⟨O,⪯⟩.

Proof. fp(EF ∗) ∩ fp(PQ∗) = Im(PQ∗∞ ◦ EF ∗∞) (Property 36) and Im(PQ∗∞ ◦ EF ∗∞) =
fp(PQ∗∞ ◦ EF ∗∞) due to idempotence (Property 37), hence the Knaster-Tarski theorem
can be applied based on Property 37 (monotony), concluding that it is a complete lattice.
It is included in O, thus this is a sublattice of ⟨O,⪯⟩.

This is illustrated by Example 11.

Example 11 (Interval lattice). Figure 9 shows all elements of [lfp(EF ∗) gfp(PQ∗)] for the
example of Section 3.2. It can be observed that ⟨fp(EF ∗)∩ fp(PQ∗),⪯⟩ is a proper sublattice
of O. Actually only 4 out of 16 possible objects in the interval are acceptable.

In the figure, direct edges corresponding to EF ∗ or PQ∗, from lattice pairs of level 2 and
4, are drawn in solid or dashed, respectively. All the objects of level 3 that are not comparable
with the two intermediate fixed points map to the extrema of the interval and thus EF ∗ are
PQ∗ are not displayed.

However, the functions PQ∗∞ ◦EF ∗∞ and PQ∗∞ ◦EF ∗∞ are not necessarily extensive,
nor anti-extensive (see Figure 10 and Example 12, p. 40). Hence, they would not be closure
operations.

For any family of context-lattice pairs within the fixed points, i.e. fp(EF ∗) or fp(PQ∗)
(the vertically or horizontally stripped area of Figure 10), the two functions are equal.

Property 39. ∀O ∈ fp(EF ∗) ∪ fp(PQ∗), PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O).

Proof. For any lattice O belonging to fp(EF ∗) ∩ fp(PQ∗), PQ∗(O) = EF ∗(O) = O, hence
PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O) = O. Similarly, for any lattice O belonging to
fp(EF ∗), then EF ∗∞(O) = O, so PQ∗∞◦EF ∗∞(O) = PQ∗∞(O). However, by Property 32,
since O ∈ fp(EF ∗), PQ∗∞(O) ∈ fp(EF ∗). This means that EF ∗∞ ◦PQ∗∞(O) = PQ∗∞(O)
as well. The same can be proved for O ∈ fp(PQ∗) with Property 33.

What is actually shown by the proof of Property 39 is that:

if O ∈ fp(EF ∗) then PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O) = PQ∗∞(O),

if O ∈ fp(PQ∗) then PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O) = EF ∗∞(O).

In particular, this applies to the bounds of fp(EF ∗) ∪ fp(PQ∗):

39

Jérôme Euzenat

Property 40.

EF ∗∞ ◦ PQ∗∞(gfp(EF ∗)) = PQ∗∞ ◦ EF ∗∞(gfp(EF ∗)) = gfp(PQ∗),

and

PQ∗∞ ◦ EF ∗∞(lfp(PQ∗)) = EF ∗∞ ◦ PQ∗∞(lfp(PQ∗)) = lfp(EF ∗).

Proof. The first part of these equations are consequences of Property 39, since gfp(EF ∗) and
lfp(PQ∗) belong to fp(EF ∗) and fp(PQ∗), respectively. The second part is due to PQ∗∞ ◦
EF ∗∞(gfp(EF ∗)) = PQ∗∞(gfp(EF ∗)) and EF ∗∞ ◦ PQ∗∞(lfp(PQ∗)) = EF ∗∞(lfp(PQ∗))
for the same reason that gfp(EF ∗) ∈ fp(EF ∗) and lfp(PQ∗) ∈ fp(PQ∗), respectively. Prop-
erty 34 shows that the second terms correspond to gfp(PQ∗) and lfp(EF ∗), respectively.

Example 12 shows that EF ∗∞ ◦ PQ∗∞(O#) ≺ O# ≺ PQ∗∞ ◦ EF ∗∞(O#) hence that
the equality does not hold in general.

Example 12 (Counterexample to equality in RCA). Consider Example 3.2 (p. 15), lfp(EF ∗)

= O1
12 = {⟨K1

1 , L
1
1⟩, ⟨K1

2 , L
1
2⟩} and gfp(PQ∗) = O⋆

12 = {⟨K⋆
1 , L

⋆
1⟩, ⟨K⋆

2 , L
⋆
2⟩}. O#

12 = {⟨K#
1

, L#
1 ⟩, ⟨K

#
2 , L#

2 ⟩} belongs to [lfp(EF ∗) gfp(PQ∗)] but not to fp(EF ∗)∩ fp(PQ∗). It happens
that EF ∗(O#

12) = O⋆
12 and PQ∗(O#

12) = O1
12, hence PQ∗∞◦EF ∗∞(O#

12) = PQ∗◦EF ∗(O#
12) =

O⋆
12 and EF ∗∞ ◦ PQ∗∞(O#

12) = EF ∗ ◦ PQ∗(O#
12) = O1

12. These two objects are not isomor-
phic. What can be said, in this case, is that EF ∗∞ ◦ PQ∗∞(O#

12) ≺ PQ∗∞ ◦ EF ∗∞(O#
12).

This is the result of σ which may add needed support (for C and B from A and D) and π
which may suppress unsupported concepts (A missing C and D missing B).

It is not necessary that the results of the closure be the bounds of the interval as is shown
for any object of the second and fourth lines of the lattice of Figure 9.

It may be that, as illustrated by Example 12, when PQ∗∞ is first applied, it suppresses
non-supported attributes which cannot be recovered by scaling. Conversely, EF ∗∞ applied
first may scale attributes (∃p.D in Example 12) which generate new concepts (B) supporting
previously non-supported concept (D). These will not be suppressed any more.

Property 41 shows that, in addition, there is still a homomorphism between the two
resulting objects.

Property 41. ∀O ∈ O, EF ∗∞ ◦ PQ∗∞(O) ⪯ PQ∗∞ ◦ EF ∗∞(O).

Proof. PQ∗∞(O) ⪯ O by Property 25. But EF ∗∞ is monotone (Property 23), hence EF ∗∞◦
PQ∗∞(O) ⪯ EF ∗∞(O). PQ∗∞ is also monotone (Property 23), thus PQ∗∞ ◦ EF ∗∞ ◦
PQ∗∞(O) ⪯ PQ∗∞ ◦ EF ∗∞(O). However, PQ∗∞ ◦ EF ∗∞(O) ∈ fp(EF ∗) ∪ fp(PQ∗) so
PQ∗∞ ◦EF ∗∞(O) = EF ∗∞ ◦PQ∗∞(O) (Property 39). Thus, PQ∗∞ ◦EF ∗∞ ◦PQ∗∞(O) =
EF ∗∞ ◦ PQ∗∞ ◦ PQ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O). This means that EF ∗∞ ◦ PQ∗∞(O) ⪯
PQ∗∞ ◦ EF ∗∞(O).

Alternative proof. The same reasoning can be held from O ⪯ EF ∗∞(O) (Property 25) and
EF ∗∞ and PQ∗∞ being monotone (Property 23). Hence, PQ∗∞(O) ⪯ PQ∗∞ ◦ EF ∗∞(O)
and EF ∗∞ ◦PQ∗∞(O) ⪯ EF ∗∞ ◦PQ∗∞ ◦EF ∗∞(O). But, PQ∗∞ ◦EF ∗∞(O) ∈ fp(EF ∗)∪

40

The fixed-point semantics of relational concept analysis

·
·

·

·

·
·

·

·

EF ∗

PQ∗

EF ∗

PQ∗∞

PQ∗

EF ∗∞PQ∗∞

EF ∗∞

EF ∗

PQ∗

PQ∗∞

EF ∗∞

EF ∗

PQ∗

⪯

PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O) ⪯ O
Property 39

O ⪯ PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O)
Property 39

PQ∗∞ ◦ EF ∗∞(O) = O = EF ∗∞ ◦ PQ∗∞(O)

EF ∗∞ ◦ PQ∗∞(O) ⪯ PQ∗∞ ◦ EF ∗∞(O)
Property 41

Figure 10: Illustration of the position of PQ∗∞◦EF ∗∞(O) and EF ∗∞◦PQ∗∞(O) depending
on O’s origin (in dotted, O, in dashed fp(EF ∗) ∪ fp(PQ∗), in plain fp(EF ∗) ∩
fp(PQ∗)). Colours correspond to that of Figure 8: green starting from fp(EF ∗),
red starting from fp(PQ∗), blue starting outside of them.

fp(PQ∗), so PQ∗∞ ◦EF ∗∞(O) = EF ∗∞ ◦ PQ∗∞(O) (Property 39). Thus EF ∗∞ ◦ PQ∗∞ ◦
EF ∗∞(O) = PQ∗∞ ◦EF ∗∞ ◦EF ∗∞(O) = PQ∗∞ ◦EF ∗∞(O). Hence, EF ∗∞ ◦PQ∗∞(O) ⪯
PQ∗∞ ◦ EF ∗∞(O).

The alternative proof is given here to show that starting from the EF ∗ or PQ∗ give the
same result.

It is thus unclear what to do with EF ∗∞ ◦ PQ∗∞ and PQ∗∞ ◦ EF ∗∞ in general. For
instance, if one needs an operation to map elements of O to fp(EF ∗) ∩ fp(PQ∗), which one
is preferable? There may be an interest in studying the interval [EF ∗∞ ◦PQ∗∞(O) PQ∗∞ ◦
EF ∗∞(O)]. Does it contain only fixed points or no fixed points? Are these the image
of other lattices? This question can be answered if O can be compared to these bounds
(Proposition 42): the intermediate families are not fixed points.

Proposition 42. ∀O ∈ O \ (fp(EF ∗) ∩ fp(PQ∗)):
– if O ⪯ PQ∗∞ ◦ EF ∗∞(O), then ∀O′ ∈ [O PQ∗∞ ◦ EF ∗∞(O)[, O′ ̸∈ fp(EF ∗) ∩ fp(PQ∗),
– if EF ∗∞ ◦ PQ∗∞(O) ⪯ O, then ∀O′ ∈]EF ∗∞ ◦ PQ∗∞(O), O], O′ ̸∈ fp(EF ∗) ∩ fp(PQ∗).

Proof. Considering the first item of the proposition, O ⪯ PQ∗∞ ◦EF ∗∞(O) can only occur
if EF ∗∞(O) ∈ fp(PQ∗), i.e. PQ∗∞ ◦ EF ∗∞(O) = EF ∗∞(O). Indeed, if this were not the
case, then PQ∗∞ would suppress attributes from EF ∗∞(O). However, since O ⪯ PQ∗∞ ◦

41

Jérôme Euzenat

EF ∗∞(O), these could not be attributes from O, but only attributes added by EF ∗∞. But
since EF ∗∞ only adds attributes if they are supported and it starts with attributes from O,
this is not possible. Thus, if O′ ∈ [O PQ∗∞ ◦EF ∗∞(O)[then O′ ∈ [O EF ∗∞(O)[. However,
O′ cannot be a fixed point for EF ∗ because it contains all attributes of O which would scale
to generate all those of EF ∗∞(O). Hence O′ ̸∈ fp(EF ∗) ∩ fp(PQ∗).

The second item has a similar proof: EF ∗∞◦PQ∗∞(O) ⪯ O can only occur if PQ∗∞(O) ∈
fp(EF ∗), i.e. EF ∗∞ ◦PQ∗∞(O) = PQ∗∞(O). Indeed, if this were not the case, then EF ∗∞

would generate attributes from PQ∗∞(O). However, since EF ∗∞ ◦ PQ∗∞(O) ⪯ O, these
could only be attributes of O which were suppressed by PQ∗∞ due to lack of support.
But this is not possible because if they lacked support in O, there is not more support
for them in PQ∗∞(O), which only reduces O. Thus, if O′ ∈]EF ∗∞ ◦ PQ∗∞(O) O], then
O′ ∈]PQ∗∞(O) O]. However, O′ cannot be a fixed point for PQ∗ because it contains less
attributes than O: if these attributes lacked supports in O, they would still lack it in O′.
Hence, O′ ̸∈ fp(EF ∗) ∩ fp(PQ∗).

This is illustrated by Example 13:

Example 13. In Example 12 (p. 40), O#
34 = {⟨K#

3 , L#
3 ⟩, ⟨K

#
4 , L#

4 ⟩} is a fixed point for
neither EF ∗ nor PQ∗. PQ∗∞ ◦EF ∗∞(O#

34) = EF ∗∞(O#
34) = O⋆

34 and EF ∗∞ ◦PQ∗∞(O#
34)

= PQ∗∞(O#
34) = O1

34. None of the objects in the interval between O#
34 and either O⋆

34 or
O1

34 belongs to fp(EF ∗) ∩ fp(PQ∗) as can be seen in Figure 9.

This result cannot be generalised to the interval]EF ∗∞ ◦PQ∗∞(O) PQ∗∞ ◦EF ∗∞(O)[
as shown by Example 14.

Example 14 (The subinterval may contain fixed points). Following Example 13, O′
34 =

{⟨K ′
3, L

′
3⟩, ⟨K ′

4, L
′
4⟩} belongs to]EF ∗∞ ◦ PQ∗∞(O#

34) PQ∗∞ ◦ EF ∗∞(O#
34)[=]O1

34, O⋆
34[as

can be observed in Figure 9. However, O′
34 ∈ fp(EF ∗) ∩ fp(PQ∗).

Proposition 42 can however be useful algorithmically. Indeed, if one considers the non-
acceptable objects of Figure 9 on the same line as O#

34, then this result identifies as non
acceptable two objects on the second and fourth line without testing them.

8. Conclusion

We addressed the questions of which family of concept lattices was returned by relational
concept analysis and, more generally, which such families could be considered acceptable.

This paper provides an answer to these questions by characterising the acceptable families
of context-lattice pairs that describe a particular initial family of contexts as those families
which are well-formed, saturated and self-supported. It identifies the results returned by
relational concept analysis as the smallest element of this set. It also defines an alternative
operation providing its greatest elements. The structure of the set of acceptable solutions
has been further characterised.

To that extent the paper defines the set of well-formed objects O, a function EF ∗,
generalising RCA, expanding a family, and a function PQ∗ contracting a family. The fixed
points of these functions characterise the saturated families and the self-supported families

42

The fixed-point semantics of relational concept analysis

respectively. Hence, the acceptable solutions are those elements of the intersection of the
fixed points of both functions (fp(EF ∗) ∩ fp(PQ∗)).

These results rely fundamentally on the finiteness of the structure and monotony of the
operations. Dealing with infinite structures would jeopardise the construction of the sets
of scalable relational attributes (Section 2.4.1), however as soon as the termination of the
application of the operations is preserved, this should not be a problem. Non-monotonic
operations could be induced by non-monotonic scaling operations. Such operations would
prevent relational concept analysis to work properly and would require fully different mech-
anisms.

In FCA, conceptual scaling is considered as a human-driven analysis tool: a knowl-
edgeable person could provide attributes to be scaled for describing better the data to be
analysed. In RCA, scaling is used as an extraction tool, with the drawback to potentially
generate many attributes. By only extracting the least fixed point, RCA avoids generating
too many of them. This is useful when generating a description logic TBox because all con-
cepts are well-defined and necessary, but other contexts may benefit from exploiting other
solutions.

Beyond the minimal common acceptable lattices returned by RCA and the most detailed
ones that RCA returns, algorithms may be developed for returning all acceptable solutions
[Atencia et al., 2021]. The characterisation of the structure of the space of acceptable
solutions aims at contributing to this goal. However, our work does not provide an ‘efficient’
way to obtain all elements of this set.

This work also opens perspectives for helping users to identify the acceptable solution
that they prefer. Beyond generating all solutions, another option is to offer users the oppor-
tunity to guide the navigation among them. The structure of admissible solutions and the
associated functions may be fruitfully exploited in order to help users finding an acceptable
solution featuring the concepts and attributes that they want and not unnecessary ones.

An anonymous reviewer remarked that variations of RCA, such as those based on AOC-
posets [Dolques et al., 2013], may receive the same treatment. This is a perspective worth
pursuing, that may lead to generalise the results presented here.

Finally, the position of relational concept analysis with respect to formal concept analysis
and Galois connections would be worth investigating. On the one hand, this work shows
that, contrary to other extensions that use scaling to encode a problem within FCA, RCA
cannot be encoded in FCA. Indeed, RCA admits various fixed points contrary to FCA.
RCA is not just the application of a product or sequence of FCA, but relations between
contexts introduce constraints between them leading to the possibility of alternative fixed
points. Hence, an encoding would not be direct, so that it provides RCA solutions directly.
On the other hand, other generalisations of FCA get closer to general Galois connections by
extending the structure of attributes. The open question is whether RCA is another instance
of a Galois connection extending FCA or if these two need a common generalisation.

Acknowledgments

This work has been partially funded by the ANR Elker project (ANR-17-CE23-0007-01).
The author thanks Petko Valtchev for comments and suggestions on an earlier version of this

43

Jérôme Euzenat

work, Marianne Huchard for taking the pain to describe the trick used for forcing discrimi-
nation, Amedeo Napoli for explaining me RCA (and so many other things), Jérôme David
for reviewing the text, and Philippe Besnard for pointing to the Knaster-Tarski theorem.
Anonymous reviews helped clarifying the paper.

9. Bibliography

Atencia, M., David, J., Euzenat, J., Napoli, A., & Vizzini, J. (2020). Link key candidate
extraction with relational concept analysis. Discrete applied mathematics, 273, 2–20.
doi: 10.1016/J.DAM.2019.02.012 (cit. on pp. 3, 9).

Atencia, M., David, J., Euzenat, J., Napoli, A., & Vizzini, J. (2021). Relational concept
analysis for circular link key extraction (Deliverable No. 1.2). Elker. https://moex.
inria.fr/files/reports/elker-1.2.pdf. (Cit. on p. 43).

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.). (2007).
The description logic handbook: Theory, implementations and applications (2nd ed.).
Cambridge University Press. doi: 10.1017/cbo9780511711787.003. (Cit. on p. 8).

Baader, F., & Distel, F. (2008). A finite basis for the set of E L -implications holding in
a finite model. Proc. 6th International Conference on Formal Concept Analysis
(ICFCA), Montréal (CA), 4933, 46–61. doi: 10.1007/978- 3- 540- 78137- 0_4 (cit. on
p. 10).

Belohlávek, R. (2008). Introduction to formal concept analysis (tech. rep.). Univerzita Palack-
ého, Olomouc (CZ). http://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf. (Cit. on p. 27).

Braud, A., Dolques, X., Huchard, M., & Le Ber, F. (2018). Generalization effect of quantifiers
in a classification based on relational concept analysis. Knowledge-based systems, 160,
119–135. doi: 10.1016/J.KNOSYS.2018.06.011 (cit. on pp. 4, 9).

Chaudron, L., & Maille, N. (2000). Generalized formal concept analysis. Proc. 8th Inter-
national Conference on Conceptual Structures (ICCS), Darmstadt (DE), 1867, 357–
370. doi: 10.1007/10722280_25 (cit. on p. 9).

Dolques, X., Huchard, M., Nebut, C., & Reitz, P. (2012). Fixing generalization defects in
UML use case diagrams. Fundamenta informaticae, 115 (4), 327–356. doi: 10.3233/FI-
2012-658 (cit. on p. 4).

Dolques, X., Le Ber, F., & Huchard, M. (2013). AOC-posets: A scalable alternative to
concept lattices for relational concept analysis. Proc. of the 10th international con-
ference on concept lattices and their applications (CLA), La Rochelle (FR), 129–140.
https://ceur-ws.org/Vol-1062/paper11.pdf (cit. on p. 43).

Euzenat, J. (2021). Fixed-point semantics for barebone relational concept analysis. Proc.
16th international conference on formal concept analysis (ICFCA), Strasbourg (FR),
12773, 20–37. doi: 10.1007/978-3-030-77867-5_2 (cit. on pp. 4, 18, 19, 22, 26, 29).

Euzenat, J. (2023). Stepwise functional refoundation of relational concept analysis (Research
report No. 9518). INRIA. doi: 10.48550/arXiv.2310.06441. (Cit. on p. 4).

Ferré, S., & Cellier, P. (2020). Graph-FCA: An extension of formal concept analysis to
knowledge graphs. Discrete applied mathematics, 273, 81–102. doi: 10.1016/J.DAM.
2019.03.003 (cit. on p. 9).

44

https://doi.org/10.1016/J.DAM.2019.02.012
https://moex.inria.fr/files/reports/elker-1.2.pdf
https://moex.inria.fr/files/reports/elker-1.2.pdf
https://doi.org/10.1017/cbo9780511711787.003
https://doi.org/10.1007/978-3-540-78137-0_4
http://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf
https://doi.org/10.1016/J.KNOSYS.2018.06.011
https://doi.org/10.1007/10722280_25
https://doi.org/10.3233/FI-2012-658
https://doi.org/10.3233/FI-2012-658
https://ceur-ws.org/Vol-1062/paper11.pdf
https://doi.org/10.1007/978-3-030-77867-5_2
https://doi.org/10.48550/arXiv.2310.06441
https://doi.org/10.1016/J.DAM.2019.03.003
https://doi.org/10.1016/J.DAM.2019.03.003

The fixed-point semantics of relational concept analysis

Ferré, S., & Ridoux, O. (2000). A logical generalization of formal concept analysis. Proc. 8th
International Conference on Conceptual Structures (ICCS), Darmstadt (DE), 1867,
371–384. doi: 10.1007/10722280_26 (cit. on p. 9).

Ganter, B., & Kuznetsov, S. (2001). Pattern structures and their projections. Proc. 9th
International conference on conceptual structures (ICCS), Stanford (CA US), 2120,
129–142. doi: 10.1007/3-540-44583-8_10 (cit. on p. 9).

Ganter, B., Stumme, G., & Wille, R. (Eds.). (2005). Formal concept analysis: Foundations
and applications. Springer. doi: 10.1007/978-3-540-31881-1. (Cit. on p. 2).

Ganter, B., & Wille, R. (1999). Formal concept analysis: Mathematical foundations. Springer.
doi: 10.1007/978-3-642-59830-2. (Cit. on pp. 2, 5–7, 12, 18).

Guigues, J.-L., & Duquenne, V. (1986). Familles minimales d’implications informatives ré-
sultant d’un tableau de données binaires. Mathématiques et sciences humaines, 95,
5–18. https://www.numdam.org/item/MSH_1986__95__5_0/ (cit. on p. 10).

Guimarães, R., Ozaki, A., Persia, C., & Sertkaya, B. (2023). Mining E L ⊥ bases with
adaptable role depth. Journal of artificial intelligence research, 76, 119–135. doi:
10.1613/jair.1.13777 (cit. on p. 10).

Huchard, M., Rouane Hacène, M., Roume, C., & Valtchev, P. (2007). Relational concept
discovery in structured datasets. Annals of Mathematics and Artificial Intelligence,
49 (1), 39–76. doi: 10.1007/s10472-007-9056-3 (cit. on p. 3).

Keip, P., Ferré, S., Gutierrez, A., Huchard, M., Silvie, P., & Martin, P. (2020). Practical
comparison of FCA extensions to model indeterminate value of ternary data. Proc.
15th International Conference on Concept Lattices and Their Applications (CLA),
Tallinn (EE), 2668, 197–208. https://ceur-ws.org/Vol-2668/paper15.pdf (cit. on p. 9).

Kötters, J. (2013). Concept lattices of a relational structure. Proc. 20th International Con-
ference on Conceptual Structures (ICCS), Mumbay (IN), 7735, 301–310. doi: 10.1007/
978-3-642-35786-2_23 (cit. on p. 9).

Missaoui, R., Kwuida, L., & Abdessalem, T. (Eds.). (2022). Complex data analytics with
formal concept analysis. Springer. doi: 10.1007/978-3-030-93278-7. (Cit. on p. 2).

Nebel, B. (1990). Reasoning and revision in hybrid representation systems (Vol. 422). Springer.
doi: 10.1007/BFB0016445. (Cit. on p. 27).

Ouzerdine, A., Braud, A., Dolques, X., Huchard, M., & Le Ber, F. (2019). Adjusting the
exploration flow in relational concept analysis – an experience on a watercourse
quality dataset. In R. Jaziri, A. Martin, M.-C. Rousset, L. Boudjeloud-Assala, &
F. Guillet (Eds.), Advances in knowledge discovery and management (pp. 175–198,
Vol. 1004). Springer. doi: 10.1007/978-3-030-90287-2_9. (Cit. on p. 3).

Prediger, S. (1997). Logical scaling in formal concept analysis. Proc. 5th International Con-
ference on Conceptual Structures (ICCS), Seattle (WA US), 1257, 332–341. doi:
10.1007/BFB0027881 (cit. on p. 7).

Rouane Hacène, M., Huchard, M., Napoli, A., & Valtchev, P. (2013a). Relational concept
analysis: Mining concept lattices from multi-relational data. Annals of Mathematics
and Artificial Intelligence, 67 (1), 81–108. doi: 10.1007/S10472-012-9329-3 (cit. on pp. 2,
3, 7, 9, 10, 12, 29).

Rouane Hacène, M., Huchard, M., Napoli, A., & Valtchev, P. (2013b). Soundness and com-
pleteness of relational concept analysis. Proc. 11th International Conference on For-

45

https://doi.org/10.1007/10722280_26
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-540-31881-1
https://doi.org/10.1007/978-3-642-59830-2
https://www.numdam.org/item/MSH_1986__95__5_0/
https://doi.org/10.1613/jair.1.13777
https://doi.org/10.1007/s10472-007-9056-3
https://ceur-ws.org/Vol-2668/paper15.pdf
https://doi.org/10.1007/978-3-642-35786-2_23
https://doi.org/10.1007/978-3-642-35786-2_23
https://doi.org/10.1007/978-3-030-93278-7
https://doi.org/10.1007/BFB0016445
https://doi.org/10.1007/978-3-030-90287-2_9
https://doi.org/10.1007/BFB0027881
https://doi.org/10.1007/S10472-012-9329-3

Jérôme Euzenat

mal Concept Analysis (ICFCA), Dresden (DE), 7880, 228–243. doi: 10.1007/978-3-
642-38317-5_15 (cit. on pp. 4, 12).

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific journal
of mathematics, 5 (2), 285–309. doi: 10.2140/pjm.1955.5.285 (cit. on p. 28).

Wajnberg, M. (2020). Analyse relationnelle de concepts: Une méthode polyvalente pour
l’extraction de connaissance [Doctoral dissertation, Université du Québec à Mon-
tréal & Université de Lorraine]. https://hal.science/tel-03042085. (Cit. on pp. 6, 9).

46

https://doi.org/10.1007/978-3-642-38317-5_15
https://doi.org/10.1007/978-3-642-38317-5_15
https://doi.org/10.2140/pjm.1955.5.285
https://hal.science/tel-03042085

	Introduction
	Preliminaries and related work
	Basics of formal concept analysis
	Extending formal concept analysis with scaling
	Other extensions
	A very short introduction to RCA
	Dependencies and cycles

	Motivating examples
	RCA may accept different families of concept lattices
	Minimal RCA example

	Dual context-lattice space
	The space of contexts K
	The space of lattices L
	The lattice T of context-lattice pairs
	The lattice O of families of context-lattice pairs

	A functional standpoint on RCA
	The expansion function EF*
	Self-supported lattices
	The contraction function PQ*

	The fixed points of EF* and PQ*
	Fixed points
	Closure functions (EF* and PQ*)
	Acceptable solutions

	The fixed-point semantics of RCA
	Classical RCA computes EF*'s least fixed point
	Greatest fixed-point (of PQ*) semantics
	The structure of fixed points

	Conclusion
	Bibliography

