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ABSTRACT
The content of experiments must be semantically described. This
topic has already been largely covered. However, some neglected
benefits of such an approach provide more arguments in favour
of scientific knowledge graphs. Beyond being searchable through
flat metadata, a knowledge graph of experiment descriptions may
be able to provide answers to scientific and methodological ques-
tions. This includes identifying non experimented conditions or
retrieving specific techniques used in experiments. In turn, this
is useful for researchers as this information can be used for re-
purposing experiments, checking claimed results or performing
meta-analyses.
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1 INTRODUCTION
The movement towards open science promotes, beyond article
publication, the availability of research artifacts. The benefits of
these efforts are well understood, especially for their contribution
to accountability and reproducibility.

We concentrate here on experimental sciences and the need to
describe experiments. This covers fields as diverse as experimental
psychology, microarray sieving, multi-agent social simulation or
ethological studies to name a few. Experiments are diverse and do
not all fit in the same mold, even within such fields. It is thus not
expected to design a common template, unless very general, hence
imprecise.

Valuable efforts support paper publication, data publication and
especially experimental data publication. Available open data repos-
itories provide storage, integrity, identification and accessibility.
Proper metadata allows to index them through specific aggregated
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indexes and find them through search engines. This definitely con-
tributes to provide Findable, Accessible, Interoperable and Reusable
(FAIR) data. But experiments are not restricted to data.

Here, I do not concentrate on the necessary format or infrastruc-
ture for making this happening. These annotations may consist in
specific graphs [1] or fragmented nanopublications [6, 12]. Many
efforts have been dedicated to these aspects which can be exploited
for experiment descriptions. I plead for having experiments de-
scribed with semantic web technologies, independently from their
format. This is not restricted to describing how data is processed,
which is already quite well managed, e.g. through electronic note-
books, but also how data is obtained before being analysed [11, 14].

Although this information is usually provided in research papers,
it is often left aside in metadata, because the most urging tasks
are to safeguard, timestamp, identify and eventually replay the
experiments. However, this is a very important issue in the long
run.

There are already many individual reasons to describe ones’
experiments more formally:

accountability Laboratory logbooks may be used for attribu-
tion and anteriority, as well as checking authors account-
ability to their claims. Automatic search through a well-
documented corpus of their electronic records is useful.

reproducibility Research papers are assumed to describe ex-
periments so that they can be repeated. As valuable would
be an experiment description from which it is possible to run
the experiment again and to compare the results to those
which were already found.

intelligibility They can be used in order to understand better
how an experiment was performed precisely, what was the
type of reagent used or how were some values measured.

The term individual has been used above because it concerns one
individual’s experiments, or the collection of the experiments in
one laboratory. This already allows experimenters to quickly search
from their experimental results. But too often, these experiments
are taken in isolation. Beyond reproduction, reuse, reanalysing and
simply being aware of experiment results is useful. This should
allow other experimenters to build on each other results more
quickly and accurately. So far, this is achieved through reading
papers.

Consider the following example: one carries out an extensive
experiment to determine if a population (e.g. people, animals, cells,
agents) bearing a particular feature (e.g. gene, habit, context, pro-
gram) is more efficient with respect to some measure (e.g. fighting
a disease, reproducing, achieving a task, solving a problem). Having
completed the experiment, a paper is submitted to a prestigious
journal. But the reviews come back stating that such an experi-
ment has already been performed returning significantly different
results. Would have it been better to be able to find this experiment
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beforehand? Nowadays, this is achieved by screening and reading
papers. It is not very easy to be sure that the literature has been
thoroughly explored and that the really relevant experiments have
been found. Less dramatic, having a formal description of the ex-
perimental settings allows to quickly determine what the difference
between them are, either to borrow one superior technique or to
promote a new one. Finally, a precise description should allow to
better understand why the results of so similar experiments are
different.

The point of this position paper is not to merely call for describ-
ing experiments semantically. It is to try to convince why, beyond
documenting resources and contributing reproducibility, beyond
putting paper content in a scientific knowledge graph [1], semanti-
cally describing experiments themselves can be extremely useful
in modern science. Taking advantage of the flexibility, extendibility
and semantics of semantic technologies in order to make these a
more practical tool should allow, in particular, sophisticated queries,
meta-analyses over experiment results, data reuse, experiment re-
purposing, and more automated science.

In the following, we first present a brief state of the art of cur-
rent efforts for publishing experiment descriptions. We then pro-
vide characteristics of scientific experiment knowledge graphs. Fi-
nally we consider the benefits of such scientific knowledge graphs,
through querying and more broadly applications interpreting de-
scriptions. We then discuss some ways which should ease their
adoption.

2 STATE OF THE ART
Semantic eScience [2] exploits semantic web technologies to pro-
vide an interoperable and machine-interpretable infrastructure for
scientific enquiry. Within the past years, it has been a continuing
source of attention.

2.1 Metadata
Necessary technologies are already in place for data and metadata
publication and identification, effectively making it largely Findable,
Accessible, Interoperable, Reusable (FAIR) data [26].

On the storage and publication side, popular resources such as
Zenodo, FigShare, OSF storage and various dataverses offer long-
term storage and identification of data. Stored data is associated
with metadata. The used metadata schemes, or the part understood
by repositories, are easily converted in a myriad of formats and
schemata. However, they are rather poor.

These metadata are pushed and consumed by a variety of indexes
such as re3data, DataCite or Google dataset search [21]. The latter
offers search among data sets described with schema.org dataset
and DCAT.

Along these generalist repositories and search indexes, there
exist many disciplinary ones that providemore specialisedmetadata.
There are now indexes of these resources such as FAIRsharing.org,
with proper metadata search [23].

Many efforts are already dedicated or related to representing
experiments. There exists more or less standalone software such as
eLabFTW [15] to computerise laboratory notebooks and to make
them more easily accessible. But the reproducibility requirements
pushes towards more systematic efforts to describe experiments

[13]. Concerning computational experiments, of particular interest
is the COMSES Computational Model Library [22] which tracks
mostly agent-based models in life and social sciences. It aims at
reproducing computational simulations.

However, not all experiments are computational by nature, and
experiment descriptions should go beyond data manipulation. A
natural way to implement more semantic experiment descriptions
is to use semantic web technologies (RDF, OWL, SPARQL).

2.2 Content
Experiment descriptions should not merely contain metadata about
experiments, but relations between objects. An experiment may be
a process in order to collect data to test a hypothesis. All elements
should be described: the process, the hypothesis, the resulting data,
the experimental conditions and the way to assess the hypothesis
against data.

None of this has to be made in isolation: such descriptions must
aggregate many readily available resources. Relations between such
elements —which process produced which data, what hypothesis is
it supposed to support, in which paper has it been published— can
be kept track of through provenance assertions [12, 19]. They must
be linked to repositories of authors, publications which are already
well covered [5].

Concerning the objects of scientific statements, many resources
express these with semantic web technologies. In life and health
sciences, the Gene ontology, OBO Foundry, bioportal, and Bio2RDF
have been here for long and continuously improved [7].

Methodological aspects of research have not been left aside. The
Open Research Knowledge Graph project (ORKG) [1, 18] ambitions
to represent all that can be found in a research paper: this is wider
than experiments, but experiments have reproducibility require-
ments which lead their descriptions to go beyond what is available
in papers. Some work have proposed the expression of experiments
[24], of hypotheses [9] or claims [3]. On the experimental side: the
researchobject project has provided a way to describe protocols
[14] as well as SMART protocols [11]. Attempts are also made to
describe evaluation methods [25].

The state of the art allows for expressing formally broad aspects
of scientific knowledge; not only the results of scientific enquiry
but the whole process that led to establish results. Of course, this
work should be extended, but it is already a solid basis.

3 BEYOND METADATA CATALOGUES:
SCIENTIFIC KNOWLEDGE GRAPHS

There are four actors in the dissemination of such experiments
descriptions:

experimenters who provide experiment description (meta-
data) and experimental data.

repositories which provide storage and identification services.
catalogues (or indexes) which provide description aggregation

and search.
users who will use data described in these catalogues.

All these actors are providing a necessary service, but users have
a very limited opportunity to access relevant information for ful-
filling their needs. They may be scientists as well as evaluators,
integrity investigators, etc. They may have very different needs
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(dataset look up, similar experiments, similar hypotheses) and goals
(reproducibility, repurposability, enquiry).

Hence, we need scientific knowledge graphs in which to search,
navigate, query and manipulate experiment descriptions. These
may be specific to one laboratory, to a field or very general. These
scientific knowledge graphs should offer search and query features
to many aggregated experiment descriptions. Instead of full-text or
faceted search capabilities, they should offer full query evaluation
with adequate ontology interpretation.

A scientific knowledge graph uses semantic (web) technologies
to provide access to many, interrelated, experiment descriptions.
The benefit of semantic technologies are worth recalling in this
context:

versatility Any aspect of experiments should be expressible
whatever the domain it is about. The variety of available
vocabularies and ontologies is useful for that purpose.

openness It should always be possible to extend the vocabu-
lary or express unexpected information without being re-
stricted to a particular format.

expressiveness It should be possible to use formal ontologies
and exploit these ontologies to acurately answer queries.

readiness It should be supported by actual software for ex-
pressing, querying and manipulating experiments.

For a single hypothesis, there may be different experiments de-
signed to test it. An experiment design may (actually should) have
been processed several times. And the results of an individual ex-
periment may be analysed several times, with different techniques.
Each of these actions has precursors (the design is a precursor of
the experiment) and may have different performers, creation date,
etc.

This calls for a modular description of experiments alike the
FRBR model [17]: distinguishing the design of an experiment, its
actual performance (and eventually associated results) and the anal-
ysis of its outcome. The fact that all runs share features of their
implementations and all implementations are testing the same hy-
pothesis should lead to share information across experiments.

Scientists could find an intellectual satisfaction of properly de-
scribing experiments. But practically, such scientific knowledge
graphs should bring them important benefits in querying and un-
derstanding experiments.

4 QUERYING
Scientific knowledge expressed with semantic web technologies
would clearly facilitate searching results [16]. Hencewe first quickly
present obvious types of queries that a scientific knowledge graph
should be able to answer. These are classified in three categories.

4.1 Search
Search corresponds to what could be extracted from a tabular data
base using a single table. Although it is very useful, full-text search
is left aside. It can answer queries like:

• “Which experiments use a specific dataset?”,
• “Which experiments have been performed but not analysed?”,
• “Which experiments simulate (type) population evolution
(keyword) of E. coli (organism)?”,

• “Which experiments have been invalidated?”.

4.2 Advanced search
Advanced search aims at making a difference between what can
be obtained from a single table containing one experiment per line
(simple search) and what can be obtained from a data graph. In par-
ticular, it takes advantage of the relations between well-identified
objects, such as:

• “Which experiment designs test a particular hypothesis?”,
• “Which experiment designs are derived from another specific
design?”,

• “Which experiments repeat or reproduce a specific experi-
ment?”,

• “Which experiments have a protocol using tumor tissue
(product) as a sample?” [11],

• “Which hypotheses have not been confirmed since a precise
software release?”.

4.3 Scientific search
Scientific search is search informed by science. It could take ad-
vantage of knowledge about the protocol or knowledge about the
objects.

• “Which experiments of a design have yield different out-
comes (accepting/rejecting hypothesis)?”,

• “Which conditions differ between two experiments imple-
mentations? between two designs?”,

• “Which experiment designs test the growth (modality) of a
specific measure?”,

• “Which experiments in mammals (general category) have
reported cumulative cultural evolution (general effect)?”,

• “Which experiments provide measures to control for equal
motivation (general condition)?”.

All these queries have been designed to report experiments, but the
other variables of the queries are equally useful.

Some benefits of these queries are not brought by what these
repository were intended to (reporting the conditions under which
an experiment has been performed), but serendipitously finding
secondary, but recorded elements.

5 BEYOND QUERYING, UNDERSTANDING
Querying descriptions is the first natural benefit of providing ex-
periment descriptions. Moreover, they should provide computers
with a better grasp at what is described. Not pretending that they
actually understand what is described, this give them leverage to go
beyond querying. We provide below examples of what is possible.

Beyond reproducibility, which already requires a precise descrip-
tion of performed experiments, machine-interpretable descriptions
would allow easier experiment adaptation, modification, compari-
son, or checking.

5.1 Consistency checking
If experiments are described in a meaningful way, it should be possi-
ble to test beforehand, or statically, that they make sense. Classical
tests are that every process element is provided with proper input,
can be processed (e.g. compatible software configurations) and will
generate expected output. Such tests can be performed at the design
level and at the experiment level.
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Tools may be developed to help (debugging and) peer-reviewing
experiment design. They may also help to identify missing informa-
tion in descriptions and so doing facilitate off-line reproducibility.

This would be a very important support for experimenters, as
well as pre-registration reviewers [4]. Going further, this could help
checking beforehand that the setting indeed tests the hypothesis.

5.2 Repeating, reproducing
Checking the consistency of descriptions statically should be very
important independently from any actual attempt at reproducing
experiments. However, static analysis can test that a description
make sense, not what sense it makes. The latter is achieved through
performing the experiment.

This is, in principle, far easier for computational experiments.
Providing accurate descriptions of computer-based experiments can
allow a computer to reproduce them. For that purpose, the semantic
descriptions must also be either operational or translatable to an
executable format.

This is the goal of adopting executable workflow languages for
describing protocols. They provide both executability and better
intelligibility. However, it should be paid attention that executable
descriptions indeed correspond to what is intended.

This would contribute to one of the main goals of FAIR and open
research: improving reproducibility.

5.3 Result checking and data reuse
Once an experiment has delivered data, they have to be analysed.
Such an analysis may be part of the experiment protocol so that
experiment processing can go as far as providing the outcome: tell
if the experiment supports or rejects the hypothesis and why.

However, it should also gain at being described separately, as
this would allow to replace one implementation of a standard data
processing procedures by another making it less dependent on data
analysis packages.

In particular, it may be useful to apply, post-hoc, different analy-
ses to the same data. But it may also be useful to apply the same
analysis on different (or updated) data. For instance, data analysis
workflows can be exploited for continuous reevaluation of hypothe-
ses by updating data analyses when new data is available [10].

5.4 Meta-analysis and comparison
When experiment results are properly registered with individual
experiment descriptions, it should be easier to take advantage of
query capabilities to perform meta-analyses against knowledge
graphs. Comparing experiments and their results may allow to:

• identify experiments that may be considered the same (re-
production),

• identify experiments that can be considered variations and
tell how they differ (comparison),

• identify experiments whose results contradict one another,
• suggest conditions that impact some results (this may need
further data processing), or

• predict averse effects from results [20].
This may help organising experiment descriptions (provide an ad-
ditional overlay on them) or extracting important information for

meta-analysis papers. ORKG already goes in this direction by pro-
viding comparison services informed by the research activity [18].

5.5 Repurposing
Repurposability is the ability to quickly change parameters of one
experiment and to set-up a new experiment by assembling pieces
of existing experiments.

Repurposing, both from the initial experimenter and others, is
one important benefit from experiment descriptions. This is spe-
cially the case when the description allows to actually run the
experiment. In such a case, modifying the initial design or exper-
iment description leads to a new, already described and ready to
process, experiment.

It may also be used to properly reproduce an experiment using
different techniques.

Here again, automatic tooling may be used to check variation
validity or to suggest variations.

5.6 Automated science: the grand thing
The longer term benefits of such scientific experiment knowledge
graphs and better machine understanding is more automated sci-
ence. Experiment descriptions could lead to formal scientific col-
laboratories [8] in which scientists exchange, modify and discuss
experiments. Machine learning could help cleaning and mining
result as well as suggesting interesting research questions.

6 REQUIREMENTS
Ingredients for scientific knowledge graphs are available. What is
missing is that scientific practices embrace semantic web technolo-
gies. Requiring scientists to provide immediate work for delayed
benefits is not easy. Although, they are already used to different
degrees of formality imposed by their communities. This is visible
in notebook holding and additional requirements for publishing
papers.

A large part of experiment descriptions are still encountered in
published papers (with increasing formality). Thus, many efforts
are devoted to extract these from texts [1]. Reducing the costs of
providing extensive experiment descriptions can come from more
integration in work habits and new applications providing benefits.
Here are some suggestions:

automation can be provided by various software used for
building or recording the experiments. For instance, eLabFTW
[15] is able to connect to laboratory supply databases: identi-
fying exactly what product ‘item’ was used in an experiment.
This contributes to accountability, but can also help provid-
ing rich data. Extracting this data already facilitate providing
it to publication platforms such as Zenodo.

incrementality The main point is to be able to provide as
much data as one wants, not to force providing a complete
description. The openness and extensibility of semantic tech-
nologies allow to overcome incomplete metadata and to
make the best out of it.

reuse by referring to other components (design, authors, pa-
pers, genes) it is easier to describe experiments. An FRBR-
inspired modular design would also facilitate component
reuse.
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7 CONCLUSION
I simply claimed that precisely describing experiments semanti-
cally and connecting them in a scientific knowledge graph have
many benefits. Illustrations of these benefits have been provided.
I consider that the largest benefits of the semantic description of
experiments are for the experimenters themselves in their actual
experimental activity.

Infrastructure for storing and retrieving experiment data is avail-
able. Semantic web technologies and ontologies describing research
objects and processes have been proposed. Describing experiments
formally has attracted attention already. Hence, this paper is an
attempt at drawing more attention to experiments.
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