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Abstract. A concept lattice provides a model of a dataset that can be
navigated and explored by an analyst in an interactive way, except when
the concept lattice is too large. Such a problem can be overcome by build-
ing a representation of the whole concept lattice that keeps a reasonable
size and that can be interpreted by the analyst. Relying on previous work
about link key discovery, we revisit in this paper an approach based on
Formal Concept Analysis (FCA) and Agglomerative Hierarchical Clus-
tering (AHC) applied to a set of concepts for building a representative
set of clusters. Accordingly, we propose an AHC algorithm that (a) ef-
ficiently computes this representative set, and (b) respects the ordinal
structure of the original concept lattice. A set of experiments performed
over real datasets shows the effectiveness of our approach.

Keywords: Formal Concept Analysis - Agglomerative Hierarchical Clus-
tering - Concept Lattice Representation - Representative Set - Order
Preservation.

1 Introduction

This study is a follow-up of a preceding work about the discovery of link keys
for data interlinking in RDF datasets [Il2]. A link key can be seen as a rule
identifying pairs of individuals in two different RDF datasets that represent the
same real-world entity. Link keys can be discovered thanks to Formal Concept
Analysis (FCA) [I4], where they correspond to concepts in a specific concept
lattice. The conditions related to a link key are materialized by the intent of
the corresponding concept while the pairs of identified individuals constitute the
extent of the concept. In general, the number of link keys can be very large
making their interpretation quite hard and raising the following representation
problem: is it possible to design a compact and representative set of link keys
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preserving a maximal number of identity links and providing navigation and
interpretation capabilities to a domain analyst?

Following this track, the objective of this paper is to propose a general method
for concept lattice reduction based on Agglomerative Hierarchical Clustering
(AHC [I5121]). In the long term, we aim at building a tool for the graphical
exploration and interpretation of a concept lattice thanks to a mapping between
the concept lattice and a hierarchical partition of clusters —aka dendrogram. The
granularity of the partition may be tuned by allowing an analyst to navigate the
representation of a concept lattice going from a coarser clustering to a finer
clustering thanks to the variation of a cut-level related to a dendrogram. Among
the approaches relating clustering and FCA, the present approach is original
and proposes a reliable, readable, and interpretable summary of a concept lattice.
There are many possible applications such as data cleaning (duplicate detection),
data exploration with a variable precision, concept interpretation, and knowledge
representation in a particular domain.

More precisely we aim at constructing a compact and representative set of
clusters offering interactive data analysis capabilities. Finding such a representa-
tive set is not an easy task and relies on various constraints and a compromise.
Firstly, a cluster consists of a subset of concepts, where one specific concept
should be selected as the “medoid”, i.e., the barycenter which minimizes the dis-
tances to all other concepts in the cluster, or the supremum or infimum of the
cluster if any. The representative set, abbreviated as REPSET, is composed of
such medoids, one per cluster. Secondly, the REPSET set should be kept small
while the largest number of objects in the concept lattice should be preserved.
The size of the REPSET is related to the number of clusters it includes and is
measured by a “compression rate”. Thirdly, the number of preserved objects is
another suitable property to be considered when computing the REPSET, which
is related to the “proportion of preserved objects” (PPO) attached to the medoids
composing the REPSET. Optimizing at the same time the compression rate and
the proportion of preserved objects entails a controversy, but an acceptable com-
promise can be achieved.

For building the REPSET, we propose the CLClust algorithm that is based
on AHC [I5I21]. As input, CLClust takes a concept lattice denoted as CTL,
a dissimilarity measure defined with respect to (w.r.t.) the concept extents, a
linkage criterion, and a cutting level. As output CLClust returns a set of clusters
from which a REPSET can be issued, composed of the medoids selected in the
clusters. Moreover, CLClust applies AHC to FCA for reducing a possibly large
concept lattice in satisfying a third constraint, i.e., the set of concepts in a cluster
should respect as well as possible the ordering of concepts in CTL, as this is the
case for example when a cluster corresponds to a sublattice in CTL.

In particular, this AHC process can be regarded as a general method for
concept lattice reduction based on a similarity between concepts. Indeed this
contrasts the reduction of a concept lattice about link keys presented in [IJ,
which is based on crisp equality between sets in FCA and in partition pattern



Representation of a Concept Lattice Based on Clustering 3

structures. Here the constraint of crisp equality is relaxed and replaced by a
dissimilarity used to build a partition of concepts.

The summary of the paper is as follows. In Section [2] we propose a review of
papers related either to clustering and FCA or to reduction of concept lattices.
Then, in Section [3] we introduce the properties of a REPSET, while in Section [4]
we present the CLClust algorithm for building such a REPSET. Section [f]reports
experiments performed on different datasets that demonstrate the effectiveness
of the present approach and the efficiency of the algorithm in terms of lattice
reduction, before conclusion.

2 Related Work

Many different methods introduced to reduce the complexity of a concept lattice
are based on the clustering of the set of concepts. For example, there is a sum-
mary of classical clustering algorithms used in FCA in [22] (Section 2.9), mostly
based on constructing clusters of concepts and then lattice of clusters, while al-
ternative techniques are limiting the number of detected concepts by selecting
some relevant subset or in building a new concept hierarchy.

Clustering relies on the definition of different measures to compute the sim-
ilarity or proximity of concepts in order to apply a clustering algorithm. For
example, three similarity measures are presented in [3], while a method com-
bines the k-means algorithm with a quality measure in [I6]. A method based on
fuzzy k-means is described in [6] while [23] proposes a distance functions and a
related clustering algorithm. Finally, [TI] relies on pattern structures [13] and
on SOFIA algorithm [8] to discover cluster candidates, and then introduces an
algorithm to select non-overlapping clusters from the candidate set. In all cases
the goal is the reduction of the size of the concept lattice.

Although remaining one of the main methods to reduce the dimension of
a concept lattices, some alternative techniques to clustering have appeared. An
extensive survey in [4] presents a classification of concept lattice reduction meth-
ods into three main categories: context pre-processing (reducing the number of
attributes and yet preserving the structure of the lattice), elimination of non-
essential distinctions (methods that highlight the most significant features) and
concept filtration (a relevance criterion to choose formal concepts, objects, or
attributes).

Another approach is presented in [10], where the reduction of a context is
performed according to the properties of the implications holding in the context,
while in [I8] axial concepts are used to cluster data that are difficult to separate
in plain FCA.

Finally, we mention some papers more related to the present paper based
on the use of a congruence relation for reducing the concept lattice. In [5] a
weaker notion of congruence to reduce a concept lattice is proposed, while in [9],
revisited in [I7], authors construct a quotient lattice based on an equivalence
relation. In [25] the authors investigate how a congruence relation can be used
to decompose a lattice into meaningful parts. A close approach was presented
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before in [24], where authors were studying the decomposition of a lattice into
smaller parts using the so-called subdirect decompositions into factors.

3 Properties of a Representative Set of Concepts

It is well-known that the number of concepts in a concept lattice can be very
large. Thus it can be convenient, e.g., for an interactive analysis, to build a
compact representative set of concepts, denoted hereafter as a REPSET. Such a
REPSET can be viewed as a summary capturing as much as possible the content
of the original set of concepts. In the present case, the construction of a REPSET
is based on the application of AHC to an original CTL. The output of AHC
is a hierarchy of clusters where a “medoid”, acting as a representative of the
cluster, can be selected in each cluster. The medoid in a cluster can be defined
in different ways, e.g., as the barycenter minimizing the distances to all other
concepts in the cluster, or the supremum/infimum of the set of concepts in a
cluster when they exist.

Then, given a set of clusters generated by the AHC process, the REPSET
is composed of a set of selected medoids and should satisfy three properties.
The first property, “ensure a mazimal preservation of the ordinal structure of the
CTL”, is related to the clustering process itself. The two other properties, namely
“observe a high compression rate” and “observe a high proportion of preserved
objects” should be satisfied by the REPSET as better as possible. Moreover, it
should be noticed that, given a CTL, the REPSET is not unique and depends
on the selection of the medoids. Below we formally present and discuss these
properties.

The preservation of CTL ordering.

One requirement in applying AHC and then building the REPSET is to pre-
serve the CTL ordering in the clustering. In particular, a cluster corresponds to
a sublattice whenever the lower bound x A y and the upper bound x V y of any
pair of concepts = and y are also included in the cluster. In the present case,
based on the fact that the dissimilarity measure used in the AHC process and
introduced in the next section is not a congruence, only a “local preservation” of
the lattice ordering can be achieved. However, in the CLClust algorithm, there
exists an option constraining all clusters to be convex, i.e., a cluster corresponds
to a chain or a sublattice in CTL.

In particular, congruences and ordering preservation are detailed in [5] while
a general and extensive discussion about the preservation of a poset ordering is
proposed in [7].

The compression rate of a REPSET w.r.t. CTL.

A REPSET should be minimal in size, i.e., the smaller the number of medoids
in a REPSET the better the compression rate. The compression rate CR of a
REPSET w.r.t. CTL is calculated as follows:

|REPSET]

TL)=1-—
CrR(REPSET, CTL) CTT|
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where T and L are included in CTL, and |REPSET | denotes the number of
medoids in CTL. The compression rate is ranging from 0 to 1, and the best
values are close to 1, i.e., |[REPSET]| is small compared to |[CTL|. It is equal to 0
when |REPSET| = |CTL], i.e., there is no compression at all. The compression
rate cannot be equal to 1 as the REPSET cannot be empty, i.e., it is assumed
that there exists at least one concept whose extent is not empty.

The proportion of preserved objects (PPO).

In general a clustering process focuses on objects and this explains why we
are more interested in maximizing the proportion of preserved objects than in
maximizing the proportion of preserved attributes (the latter is an option that
should be studied in future work).

Then a REPSET should preserve a maximal number of objects, i.e., the higher
the number of objects lying in an extent and preserved in the REPSET the better
the representativeness of the REPSET. The proportion of preserved objects PPO
is calculated as follows:

Eat(md,
PPO(REPSET, CTL) = |Umdi€REPSg| zh(mdy)|

where md; denotes a medoid in the REPSET, and |G| denotes the cardinality
of the set of objects G which is assumed to be not empty. The proportion of
preserved objects PPO ranges in |0, 1], cannot be equal to zero, and is equal to
1 when all objects are preserved, i.e., REPSET = CTL.

The two former properties are in opposition as, for achieving a reliable and
maximal representativeness, the number of medoids composing a REPSET should
be low while the proportion of preserved objects should be high. Thus the com-
pression rate and the proportion of preserved objects cannot be simultaneously
optimized, but a good compromise can be achieved, i.e., discovering a relatively
small set of medoids forming the REPSET and maximizing the compression rate,
while retaining a relatively high number of preserved objects, in respecting at
the best CTL local ordering.

In the next section, we make precise the construction of a REPSET, starting
from a CTL and using agglomerative hierarchical clustering.

4 The CLClust Algorithm for Building a REPSET

4.1 Characteristics of the AHC Process in CLClust

The CLClust algorithm (see Function[L)) constructs a hierarchy of clusters thanks
to AHC [I5l2T]. The AHC process takes as input the set of concepts in CTL and
builds a hierarchical partition of clusters. As usual, AHC is based on a bottom-up
strategy, starting with each concept as a singleton cluster and then successively
merging pairs of clusters w.r.t. their dissimilarity. AHC stops when all clusters
are merged into a top cluster.
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AHC relies on two main parameters, i.e., (i) a dissimilarity measure between
concepts, and (ii) a linkage criterion for inserting a new element into a cluster.
The dissimilarity between two concepts ¢; and ¢ is defined as follows:

5(er,ca) = 1— |Ext(cy A ca)
|Ext(cy V ca)|

where ¢; V ea # L and Ext(c) is the function returning the extent of concept c.

The dissimilarity ¢ ranges from 0 to 1 and exhibits the following properties:

(i) 0(c1,c2) = 0iff ¢; = ¢o (no dissimilarity),

(ii) 6(c1, c2) = 6(c2, 1) (symmetry),

(iii) d(c1,c2) = 1 iff ext(cy Aez) = 0.

In (iii), the lower bound of ¢; and ¢y is L and then ¢; and ¢y are not com-
parable in CTL. However, when ¢; and cp are comparable, we may observe
that the closer ¢; is to ¢y the smaller §(c1,ca). For example, if ¢; < cg, then
0(c1,e2) =1 — |Ext(cy)|/|Ext(c2)| as c1 Aca = ¢1 and ¢ V ¢z = co. In this way,
given a concept say cp, the least dissimilar concept co from c¢; is in either the
lower cover or the upper cover of ¢;. In particular, intervals of concepts in CTL
can be preserved and the following proposition can be stated:

Proposition 1 (see [2]). If ¢y < ¢g < c¢g in CTL then §(c1,c2) < d(c1,c3).

This proposition, that is also discussed and proven in [2], introduces the
“cover property in AHC”, i.e., given three concepts, ¢1, c2, and c3 such that
c1 < ¢ < c3, co will be agglomerated before c3, and the ordering between c;
and c¢o in CTL is locally preserved in the cluster (about metrics and order see
also [20]). More precisely, the proposition ensures that, given a concept ¢; lying
in a cluster K, the next concept c; to be agglomerated in K, w.r.t. ¢; is the
concept the least dissimilar to ¢;, and ¢; is necessarily lying in the lower cover or
the upper cover of ¢;. In particular, this is in agreement with the properties of a
REPSET, to preserve as well as possible the CTL ordering. It should be noticed
that the full preservation of sublattices in the clustering requires the use of a
congruence as explained in [5].

The second parameter required in AHC is related to the distance dclust(X,Y)
between two clusters X and Y, actually between a cluster and a singleton clus-
ter. There are several alternatives detailed in [I5J2I]. The classical candidates
are single linkage based on “min”, complete linkage based on “max”, and aver-
age linkage based on “mean distance”. The CLClust algorithm relies on complete

linkage, i.e., dclust(X,Y) = %axyé(x,y).
reX,ye

It should be noticed that when complete linkage connects two clusters, say
X = {z1,22} and Y = {y}, then the pair exhibiting the max of the dissimi-
larities, say x1 and y, is selected. As x1 and x5 are already verifying the cover
property, say x1 < xo, where < denotes the lattice ordering, then x; and y will
also be comparable. These two configurations may happen, either y < z; < x5
or r1 < x9 and z1; < y. This shows that the concept lattice ordering is again
locally respected within the new cluster X UY = {1, z2,y}.
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obj./att.|a |b|c|d|e|f|lg|h|i]|]]|k
0 X X X
1 X | x
2 X
3 X X | X X X | x
4 X X X X X | x
5 X X | X X X | x
6 X X X X | x
7 X X X
8 X | x
9 X X|X|x X X | x

Fig. 1: The context for the running example.

c4 (#E: 10)
I:
L E:

c2 (#E: 8) c5 (#E: 7) cll (#E: 6)
I: a I: c I: 3,k
g E‘: E:‘ 2 L E: 8
c3 (#E: 1) c9 (#E: 6)
I: b I
\_ E: 1 E
cl0 (#E: 1) c7 (#E: 5)
I: h I: g
g E: 7 L E: 6

c8 (#E: 2) c6 (#E: 3)
I:e I:d
L E:’4 \__E: 35
cl (#E: 1) cl2 (#E: 1)
I:1i,f

E: 0

Fig.2: The CTL lattice for the running example.



8 J. Baixeries et al.

Co Cc1 Co c3 Cq Cs Ce Cr Cg Cg |C10 C11 C12
Co
C1 1.
() 1 ]0.88
c3 1. 1 ]0.88
Ca 1 09 (02|09
cs 1 1 0.4 1 0.3
Cé 1 1 ]0.62| 1 0.7 10.57
cr 1 1 [038] 1 0.5 (029 04
cs 1 1 |0.75] 1 0.8 10.71| 0.8 | 0.6
(&) 1 1 ]0.25| 1 0.4 |0.14| 0.5 |0.17|0.67
c10 1. 1 [088] 1 09 (086 1 1 1 ]0.83
C11 1 1 0.5 1 104|051 0.5|017{0.67|0.5 1
c12 1. 1 1088 1 0.9 {0.86]0.67| 0.8 | 0.5 |0.83| 1 0.83

Table 1: Dissimilarity table between concepts lying in CTL. Only values in
bold are needed by the CLClust algorithm.

1.0 A

0.8 1

0.6 1

0.4 1

0.2

0.0

Ci Cio Cs8 Ciz2 C5 Co9 C2 C4 Ce C7 Ci1 C3 Co

Fig. 3: Dendrogram built by AHC set up based on § and complete linkage.

4.2 The CLClust Algorithm at Work

Let us now explain how the CLClust algorithm works in practice and propose a
concrete example. AHC is initialized by computing all §(z,y) between singleton
clusters x and y and recording in a dissimilarity table, as shown in Table
However, in CLClust, thanks to the cover property in Proposition [I} only dis-
similarities between neighboring candidates are computed, marked in bold in
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Table |1l Instead of computing n.(n — 1)/2 dissimilarity values where n is the
number of clusters as in AHC, a much smaller number should be computed in
CLClust, depending on the number of neighbors of the concept under study.

Moreover, at each step of AHC, the dissimilarity table should be updated,
requiring the computation of n—2 dissimilarity values, i.e., the number of clusters
minus the two clusters that are merged. Again, in CLClust, due to the cover
property, this number is much smaller as it only involves neighbor concepts.
This particular aspect is illustrated in the next section where the running times
of standard AHC and CLClust are compared.

As a concrete example, the CTL in Figure [2] whose context is shown in
Figure [T] contains 13 concepts. Thus there are 78 dissimilarity values to compute
at initialization. However, as shown in the dissimilarity table in Table [1} the
computation is restricted to pairs of neighbor concepts, and only 18 values are
calculated in practice. At first iteration, concepts c5 and cg are merged as their
dissimilarity value is 0.14, the merging involving the minimal dissimilarity. Then
only 5 values need to be updated among the 11 possibilities at the next step
(i.e., n — 2 = 11 where n = 13). When two dissimilarities are equal, the pair of
comparable concepts, if any, is preferred in the merging.

It should be noticed that, with complete linkage, it may be necessary at some
steps to calculate values that were not previously computed. For example, calcu-
lating the similarity between (c5, cg) (after merging) and cs requires computing
the similarity value between ¢y and c5 which was not already computed.

The CLClust algorithm stops when all clusters are merged into one final clus-
ter corresponding to the whole set of concepts. The output can be visualized as a
dendrogram, i.e., a tree-based representation as shown in Figure|3} In such a den-
drogram, clusters are determined thanks to a cutting level. Setting a cutting level
mainly depends on the objectives of the analyst. More importantly, setting a cut-
ting level will determine the REPSET. For example, a cutting level of 0.8 will give
6 clusters and a compression rate of 1 — 6/13 ~ 0.54, i.e., {c1}, {c10}, {cs, c12},
{e2, ¢4, ¢5,c9,¢6, 7,11}, {cs}, and {co}, with the related REPSET {{c1}, {c10},
{es}, {c7}, {es}, {co}}. By contrast, a cutting level of 0.55 will give 7 clusters and
a compression rate of 1 — 7/13 ~ 0.46, i.e., {c1}, {c10}, {cs,c12}, {c2,¢a,¢5, 9},
{ce,c7,c11}, {3}, and {co}, with the related REPSET {{c1}, {ci0}, {cs}, {ca},
{cr}, {c3}, {co}}. In the next section, we show how the compression rate and
the proportion of preserved objects vary with the setting of the cutting level.

Even though the combination of dissimilarity d(z,y) and complete linkage
is compatible with lattice ordering, this is not sufficient to guarantee the whole
partitioning into convex sublattices. The algorithm may produce non-convex
groupings when the supremum is already associated with a cluster or in the
event of a tie in dissimilarity values (this tie being arbitrarily resolved). Therefore
the CLClust algorithm is extended with an option forcing the partitioning into
convex sublattices.

CLClust algorithm makes use of a priority queue to store pairs of clusters and
their associated distance values in ascending order. It first computes and adds
distance values between every pair of neighboring concepts (lines 4-7). Then
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Algorithm 1 The function CLClust iteratively builds the hierarchy of clusters,
minimizing the number of dissimilarity values to be computed.

1: function cLcLusT(L : a lattice, forceConvexity : Boolean)

2: values < createMinPriorityQueue()
3: > Computing disstmilarity between a concept and concepts in its cover N
4: for x € L do
5: for y € cover(z, L) do
6: L d <+ 6(z,y)
7 B add(values, (z,y), d)
8: while size(values) > 1 do
9: > Select and merge the clusters with the smallest dissimilarity N
10: (z,y),d + extract Min(values)
11: clust < createClust(z,y, d)
12: > Check cluster convexity if needed <
13: if (=forceConvexity or isConvex(clust)) then
14: > Update the dissimilarity values based on complete linkage N
15: for all ((z',y'),d’) € values do
16: if (z=2a2"ory=2a") then
17: add(values, (clust, y'), dclust(clust,y’))
18: remove(values, (', y"))
19: elseif (z =1y ory=19") then
20: add(values, (clust, z'), dclust(clust, z"))
21: remove(values, (z',y"))

return extractMin(values)

the algorithm adopts the following greedy approach (lines 8-21). It iteratively
extracts and merges the pair of clusters having the smallest distance values (lines
10-11). If the convexity is forced (line 13), the new cluster is added to the queue
only if it is effectively convex. The convexity of a cluster is satisfied if the cluster
has an infimum, a supremum, and if each concept in the cluster is lying in
the interval between the infimum and the supremum. The addition of a cluster
consists in iterating over the queue and recalculating every distance value where
one of the elements belongs to the new cluster (lines 15-21).

5 Experiments

The CLClust algorithm is evaluated by using two series of experiments. Firstly,
we demonstrate that CLClust builds a REPSET more efficiently w.r.t. running
time than a classical AHC algorithm. We also discuss the variations related to the
setting of a cutting level in the dendrogram. Secondly, the experiments evaluate
both the qualities of the clusters, and the behavior of CLClust w.r.t. precision
and recall in a supervised setting. These results confirm the effective capabilities
of the CLClust algorithm in building a compact REPSET from a concept lattice.
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dataset #concepts|#attributes|#objects
abalone 254 9 64
atom-sites 1,034 12 41
bridges 1,266 12 63
fd-reduced-250k-30 351 26 313
flight-1k-30c 3,058 19 288
flights-20-500k 490 12 23
glass 134 10 36
iris 27 5 10
page-blocks 254 11 27
wine 117 14 76

Table 2: Statistics about the datasets considered in the experiments.

5.1 Datasets and Protocol

The experiments are performed on 10 different datasets from the UC Irvine
Machine Learning Repositoryﬂ displayed in Table Every dataset is transformed
as a reduced and clarified context, possibly leading to a reduction of the initial
numbers of objects and attributes. The AddIntent algorithm [19] is used to
compute the concept lattices whose concept count is shown in column #concepts
in Table[2]. Moreover, all experiments have been conducted on a laptop equipped
with an Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz and 8GB of memory
dedicated to the JVM.

5.2 Evaluation of the CLClust algorithm

The two main aspects evaluated hereafter are the performance of the CLClust
algorithm compared with a classical AHC algorithm and the quality of the par-
titioning. The experiments were carried out with four configurations based on
different variations of the two following parameters: (i) the clustering method,
i.e., CLClust or AHC algorithms, (ii) the convexity of a cluster is imposed or
not.

For every dataset and every configuration, the running time for clustering
and the number of required dissimilarities are recorded. The results are presented
in Figures[d and [5] Figure[d only shows the three datasets in which the clustering
procedure takes at least 1 second.

As expected, configurations based on CLClust algorithm are more efficient
than those based on a classical AHC algorithm, as shown in Figure[d] In addition,
the variation CLClust-convex works faster in general. In the case of AHC, con-
vexity checking generates additional computational costs. In CLClust-convex,
the convexity requirement reduces the number of possible groupings and there-
fore the number of dissimilarities to be computed as shown in Figure 5] In line
with these observed runtimes, Figure [5]shows that the CLClust algorithm signif-
icantly reduces the number of calculated dissimilarities. This reduction is even

5 https://archive.ics.uci.edu/
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o
flight-1k-30c 11646

| 113.62
]1113.02

1.59
[ 1.99

bridges 933 i
1 9.69 0 AHC
[0 AHC-convex
1.24
. g 1157 O CLClust |
atom-sites —'5 55 B CLClust-convex
[15.13 ‘ | ! I I

time (s)

Fig. 4: Clustering running times in different configurations.

more radical when the convexity constraint is enforced. The number of calculated
dissimilarities is divided on average by 3.6, with significant differences between
datasets. The gain in terms of execution time is even greater than the gain in
terms of calculated values: reducing the number of dissimilarities also reduces
the size of the priority queue and the number of updates during grouping (lines
15-21 of Algorithm .

The study of the quality of a cluster partition built by CLClust is based on
three criteria, namely compression rate, object preservation, and convexity. In
the configurations involving CLClust and CLClust-convex, the cutting level is
changed from 0 to 1 in steps of size 0.1. For every cut level, the three criteria
are monitored. Figure [f] shows the evolution of the three criteria as a function
of the cut level while the observations that can be made on these datasets also
apply to the other datasets.

For each dataset, we can observe that, initially, compression increases faster
than preservation decreases. With the exception of flight-1k-30c, a compression
ratio of at least 0.5 can be achieved before preservation begins to decrease. As
Figure [6] shows, when convexity is not enforced, the decrease of preservation
is greater than the increase in the compression ratio. This observation can be
made for all datasets except fd-reduced-250k-30 and wine datasets, for which
preservation remains maximum.

With the exception of the iris dataset, convexity, when not enforced, is also
stable in low cut levels, but tends to decrease earlier and faster than preserva-
tion. The stability of both preservation and convexity in low cut levels can be
explained by the fact that most clusters are made up of two concepts at most
(the medoid is always the top concept of such sublattices).

When convexity is required, the preservation of objects is higher and com-
pression rate is only slightly reduced. The object preservation is higher because
imposing convexity implies that every cluster has a supremum, increasing the
probability that the medoid is the supremum and thus increasing the preserva-
tion of objects. For example, considering the atom-site dataset with a cut level
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of 0.8, the ratio of clusters whose medoid is a supremum increases from 17% to
21% when convexity is enforced.

Among the ten datasets considered in the experiments, eight datasets achieve
high compression rates such as atom-site. Only two datasets show low compres-
sion rates (< 0.5 with a cut level at 0.8), namely wine and fd-reduced-250k-30.
These differences cannot be explained either by the size of datasets or by the
number of concepts. More probably the reasons are related to the shapes of the
lattices. Indeed, wide but shallow lattices imply many incomparable concepts,
meaning that many clusters contain less than three concepts (91% in the case
of fd-reduced-250k-30). This also explains why convexity is preserved in such
lattices.

] CLClust
H crLClust-convex

T T T T T TTTT
— o e
wine — D AHC-convex I~
6,157

i _20- ;. 11.19 - 10° L
flights-20-500k | 11.2" 107
11.2-10°
) LSL-10P
flight-1k-30c N 4.67 - 105
4.67 - 10
5 3088
fd-reduced-250k-30 = ] 61,425 [
: 161,425
. — .97 585 10
bridges 5 18.01 - 10 |
18.01-10°
— 3,3‘8174 ‘;105“)5
atom-sites 1334107 B
15.34-10°
— 141,951 .
abalone : 8’?5321131 [
i 32,131
’\\HH\ Ll Ll Ll
10° 10* 10° 10°

Fig. 5: The numbers of dissimilarities required in the different configurations (log
scale).

To sum up, these results show that CLClust is more efficient than a classical
version of AHC. In addition, combining CLClust with the convexity constraint
provides the best computation times, preserves almost all the objects, with a
weak effect on the compression rate.
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Fig.6: The variations of compression, object preservation, and convexity w.r.t
the cutting level.
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6 Conclusions and Perspectives

In this paper, we are interested in reducing a concept lattice in building a rep-
resentative set of clusters, named REPSET, composed of medoid concepts, for
facilitating the visualization and interpretation of possibly large concept lattices.
The REPSET is obtained thanks to the CLClust algorithm based on AHC, and
depends on three main properties, i.e., a low number of clusters, a hight number
of preserved objects, and the local preservation of the original lattice ordering.

As future work, many elements remain to be more precisely studied and
several research directions can be explored. Firstly, we would like to extend the
experiments and to examine alternative clustering algorithms and dissimilarity
measures, and as well to investigate the impacts of the size and of the density
of the dataset at hand. Then the preservation of attributes along with objects
should also be questioned using alternative dissimilarity measures as proposed
in [12]. Finally, we would like to more deeply study the impact of the cut level
tuning on the REPSET, and the preservation of the concept lattice ordering in
the clusters, possibly using congruence relations.
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