
Discovering a Representative Set of Link Keys in
RDF Datasets

Nacira Abbas1, Alexandre Bazin2, Jérôme David1, and Amedeo Napoli3

1 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble,
France nacira.abbas@univ-grenoble-alpes.fr,jerome.david@inria.fr
2 Université de Montpellier, CNRS, LIRMM, F-34095 Montpellier, France

alexandre.bazin@lirmm.fr
3 Université de Lorraine, CNRS, Loria, F-54000 Nancy, France

amedeo.napoli@loria.fr

Abstract. A link key is based on a set of property pairs and can be used
to identify pairs of individuals representing the same real-world entity in
two different RDF datasets. Various algorithms are aimed at discovering
link keys which usually output a large number of candidates, making link
key selection and validation a challenging task. In this paper, we propose
an approach combining Formal Concept Analysis (FCA) for discovering
link key candidates and building a link key lattice, and then hierarchical
clustering over a given set of candidates for building a representative set
of link keys. Such a link key set should minimize the number of candidates
to be validated while preserving a maximal number of links between
individuals. The paper also provides a series of experiments which are
performed over different RDF datasets, showing the effectiveness of the
approach and the ability of hierarchical clustering to return a concise
and meaningful set of candidates while preserving the ordinal structure
of the link key lattice.

Keywords: Link Key Discovery · Formal Concept Analysis · Hierarchi-
cal Clustering · RDF Dataset · Representative Set.

1 Introduction

The present research work relies on the discovery of link keys, which are ex-
pressions composed of sets of property pairs and a class pair, allowing to iden-
tify two individuals lying in different RDF datasets. For example, let us con-
sider the link key ({(dsg, tit)}, {(dsg, tit), (cre, aut)}, (book, novel)). Whenever
an instance a of class book in dataset D1 has the same values for dsg (des-
ignation) as an instance b of class novel in dataset D2 for tit (title), and in
addition a and b share at least one value for cre (creator) and aut (author),
then an identity link (a, owl:sameAs, b) can be generated between a and b, and
it can be inferred that a and b denote the same entity. More formally, a link
key is composed of two sets of pairs of properties and a pair of classes, i.e.,
({(pi, qj)i∈I1,j∈J1

}, {(pi, qj)i∈I2,j∈J2
}, (c1, c2)). The first set of properties corre-

sponds to a universal quantification, i.e., the sets of attached values should be

2 N. Abbas et al.

equal, and the second set to an existential quantification, i.e., the sets of attached
values should have a non-empty intersection. The application of link keys across
two RDF datasets can be viewed as a data cleaning task, allowing duplicate
identification and thus improving data quality.

Given two RDF datasets D1 and D2, every combination of property pairs
and class pairs can be potentially considered as a link key expression. Then, link
key discovery can be considered as a knowledge discovery problem, and efficient
data mining algorithms should be designed for reducing the search space and
mining interesting and useful link keys. Several dimensions should be taken into
account to guide the mining process, among which maximality, discriminability,
and coverage. Accordingly, a link key should generate a maximal link set, while
the mapping between the pairs of instances in D1 and D2 should be close to a one-
to-one mapping. In this paper, link key discovery relies on a specific algorithm
based on Formal Concept Analysis (FCA) [10]. The algorithm takes as input two
RDF datasets and returns a concept lattice, called the lk-lattice, where each
concept encapsulates a so-called link key candidate generating a maximal set of
potential identity links [2,7]. Then, discriminability and coverage are controlled
thanks to adapted quality measures that enable the ranking and the validation
of link keys.

Meanwhile, the number of discovered link key candidates can still be (very)
large and some candidates may be preferred, raising a representation problem:
is it possible to design a compact and representative set of candidates which
preserves a maximal number of identity links and which can be navigated by a
domain analyst? Finding such a set amounts to designing an algorithm capable
of selecting a set of representative candidates preserving the largest part of the
identity links. The size of the subset of candidates and the number of preserved
links are suitable characteristics to be considered for computing such a repre-
sentative subset of candidates. While optimizing at the same time the size of
the set of candidates and the number of preserved links is not an easy task, an
acceptable compromise can be achieved.

Accordingly, our objective is to propose the lkclust algorithm that builds
a representative set of link keys, abbreviated as RepLkSet, including a min-
imal number of link keys and preserving a maximal number of identity links.
Such a RepLkSet can be presented to domain analysts for validation in data
interlinking [13], e.g., for detecting duplicates in library management or cleaning
hand-made datasets. The algorithm lkclust is based on agglomerative hier-
archical clustering (ahc [11]). As input, it takes an lk-lattice, a dissimilarity
measure defined w.r.t. the links generated by the candidates, a cutting level,
and a linkage criterion. As output it returns a RepLkSet. lkclust combines
both FCA and hierarchical clustering for reducing a large search space of candi-
dates in an original way, as the clustering process respects the lk-lattice ordering
and every cluster corresponds to a concept interval in the lk-lattice. The present
work proposes a follow-up to [1] where the reduction of the link key candidate
sets is based on crisp set equality in the framework of FCA and partition pattern

Discovering a Representative Set of Link Keys in RDF Datasets 3

structures. Here we propose an alternative and extend the preceding purpose by
considering set similarity and clustering.

There are several close approaches in data interlinking which are based on
keys [14,15,3,16] and on link keys [8,7,6]. In both cases, keys and link keys can
be seen as rules allowing to infer links between individuals, and can be used for
checking data consistency as this is performed with keys and functional depen-
dencies in database management systems. However, while keys are attached to
only one dataset4, link keys are involving two different datasets [6].

The summary of the paper is as follows. In Section 2 we recall useful basics
about link keys, FCA, and hierarchical clustering. Then, in Sections 3 and 4, we
introduce the characteristics of a RepLkSet and then the lkclust algorithm
for building such a RepLkSet. In Section 5, we report experiments performed
on different RDF datasets that demonstrate the effectiveness of the present ap-
proach, before concluding.

2 Background

2.1 Link Key Candidates and Link Sets

In the following, an RDF dataset D is composed of a set of triples (s, p, o) ∈
(U∪B)×U×(U∪B∪L), where U is a set of IRIs5, B is a set of blank nodes, and L
is a set of literals. In (s, p, o), s denotes the subject, p the property or predicate,
and o the object or value. Moreover, C(D) = {c | ∃ s (s, rdf:type, c) ∈ D}
denotes the set of class identifiers in D, I(c) = {s | ∃ s (s, rdf:type, c) ∈ D} the
set of instances of class c ∈ C(D), P (D) = {p | ∃ s, o (s, p, o) ∈ D} the set of
property identifiers in D, and p(s) = {o | (s, p, o) ∈ D} the set of objects –or
values– related to s through property p.

Given two RDF datasets D1 and D2, k = (Eq, In, (c1, c2)) is a link key
expression composed of two sets of property pairs Eq and In ⊆ P (D1)×P (D2),
with Eq ⊆ In, c1 ∈ C(D1), and c2 ∈ C(D2). For all for all (p, q) ∈ Eq, p(a) =
q(b) and p(a) ̸= ∅, where a ∈ c1 and b ∈ c2, i.e., Eq is based on equality and
corresponds to a ∀ quantifier. Moreover, for all (p, q) ∈ In, p(a)∩q(b) ̸= ∅, where
a ∈ c1 and b ∈ c2, i.e., In is based on non-empty intersection and corresponds
to an ∃ quantifier.

When such a link key expression is verified for an instance a ∈ c1 and an
instance b ∈ c2, an identity link of the form (a, owl:sameAs, b), actually an
RDF triple, can be generated. For example, in Figure 1, subjects a3 and b3 are
sharing v4 through (p1, q1) and have the same value v5 for (p2, q2). Then the link
key ({(p2, q2)}, {(p1, q1), (p2, q2)}, (c1, d1)) generates the potential identity link
(a3, b3), with Eq = {(p2, q2)} and In = {(p1, q1), (p2, q2)}.
4 The OWL2 construction HasKey allows keys to be defined for a given class, stat-

ing that each named instance of a class is uniquely identified by a property or
a set of properties, as keys in a database system (see https://www.w3.org/TR/
owl2-syntax/).

5 Internationalized Resource Identifier.

https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/

4 N. Abbas et al.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

b3 b4 b5 b6 b7 b8

p1 p2 p2 p1 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p2 p1 p1 p2

q2q1 q1 q2 q1 q2 q1 q2 q1 q2 q1 q2

c1 c2

d1

a11 a12 a13 a14 a15

v19 v20 v21 v22 v23 v24 v25 v26 v27

b11 b12 b13 b14 b15

p3 p4 p4 p3 p4 p5 p5 p4 p5 p4

q3 q4 q3q4 q4 q5 q5 q4 q4 q5 q5

c3

d2 d3

Fig. 1: Two examples of RDF datasets. Dataset D1 includes instances prefixed
by a and dataset D2 those prefixed by b. D1 includes classes c1, c2, c3, and D2

contains classes d1, d2, and d3.

The expression k1 = (Eq1, In1, (c1, c2)) over D1 and D2 denotes a link key
candidate if the set of potential links generated by k1 is not empty, i.e., L(k1) ̸= ∅,
and k1 is maximal. The latter means that there should not exist an expression
k2 = (Eq2, In2, (c1, c2)) such that In1 ⊂ In2, Eq1 ⊂ Eq2, and L(k1) = L(k2).
In the following, we will simply write “candidate” if there is no ambiguity. In
addition and for the sake of simplicity, we will only consider the In part in a
link key expression as Eq ⊆ In, i.e., k = (In, (c1, c2)).

The objective of link key discovery is to mine candidates in the possibly very
large power set P (D1) × P (D2). The notion of candidate involves maximality,
meaning that a candidate should be maximal and unique among a set of link
key expressions generating the same link set. Maximal sets attached to a given
relation, here inclusion, are usually related to a closure operator. This was one
main reason for mining link key candidates thanks to Formal Concept Analysis
(FCA [10]), as introduced in [5] and then revisited in [7]. The next section makes
this approach more precise.

2.2 Link Key Discovery based on FCA

We recall hereafter basics of FCA for allowing a good understanding of the paper.
FCA [10,9] is a mathematical framework based on lattice theory and aimed at
data analysis and classification. The basic data structure in FCA is a context
K = (G,M, I) where G denotes a set of objects, M a set of attributes, and
I ⊆ G×M a binary relation indicating that object g has attribute m.

Discovering a Representative Set of Link Keys in RDF Datasets 5

S(D1) × S(D2)

∅

k0

(a2, b3), (a3, b3),
(a4, b4), (a5, b5),
(a6, b6), (a7, b7),

(a8, b8)

(p1,q1)

k1

(a3, b3), (a4, b4),
(a5, b5), (a6, b6),
(a7, b7), (a8, b8),

(a9, b8)

(p2,q2)

k2

(a3, b3), (a4, b4),
(a5, b5), (a6, b6),
(a7, b7), (a8, b8)

(p1,q1),
(p2,q2)

k3

(a11, b12), (a12, b11),
(a11, b11), (a12, b12),
(a13, b13), (a14, b14),

(a15, b15)

(p4,q4)

k4 (a13, b13), (a14, b14),
(a13, b14), (a14, b13),

(a15, b15)

(p5,q5)

k5

(a11, b11), (a12, b12)

(p4,q4)
(p3,q3)

k6

(a13, b13), (a14, b14),
(a15, b15)

(p4,q4)
(p5,q5)

k7

∅
P (D1) × P (D2)

k8

Fig. 2: The lk-lattice based on the datasets given in Figure 1.

Two derivation operators both denoted by ·′ are working in a dual way, (i)
A′ = {m ∈ M | ∀g ∈ A, (g,m) ∈ I} with ·′ : 2G 7→ 2M , and (ii) B′ = {g ∈
G | ∀m ∈ B, (g,m) ∈ I} with ·′ : 2M 7→ 2G. Intuitively, A′ is the set of all
attributes common to objects in A while, dually, B′ is the set of all objects having
all attributes in B. The composition of the two operators ·′ is denoted by ·′′ and
corresponds to a closure operator (i.e., extensive, increasing, and idempotent).

A pair (A,B) is a concept in K iff A = B′ and B = A′. Then A is called the
“extent” and B the “intent” of concept (A,B). In particular, A and B are closed
sets, i.e., A′′ = A and B′′ = B, where A is the largest subset of objects such that
A′ = B and B the largest subset of attributes such that B′ = A. The extent A
of a concept (A,B) can be considered as a class of objects or instances, while the
intent B corresponds to the description of the class. The set of concepts can be
ordered by inclusion w.r.t. extents or intents. A concept (A1, B1) is subsumed by
a concept (A2, B2) whenever A1 ⊆ A2 or dually B2 ⊆ B1. The set of all concepts
is partially ordered thanks to this subsumption relation within a complete lattice
named the concept lattice and including a to (⊤) and a bottom (⊥) element.

For example, given the two RDF datasets D1 and D2 in Figure 1, a context
K = (G,M, I) can be built, where the set G of objects contains pairs of individ-
uals, say (ai, bj), and the set of attributes M includes pairs of properties (pi, qj)
quantified by ∃. When a pair of individuals (ai, bj) verifies a such property pair
(pi, qj), a cross fills the corresponding cell in the context. Then the concepts
of K are calculated and a concept lattice called lk-lattice is built thanks to
FCA algorithms, as shown in Figure 2. Here it is not possible to show all the
details of the construction of the lk-lattice, but the reader may check [7,2].
In the lk-lattice, the intent of k3, i.e., {(p1, q1), (p2, q2)}, represents a link key
candidate whose associated pair of classes is (c1, d1). The extent of k3, namely
{(a3, b3), (a4, b4), (a5, b5), (a6, b6), (a7, b7), (a8, b8)}, corresponds to the set of gen-

6 N. Abbas et al.

erated links L(k3). Then, for all (ai, bj) ∈ L(k3), p1(ai) and q1(bj), and as well
p2(ai) and q2(bj), are sharing at least one value.

2.3 Link Key Validation based on Discriminability and Coverage

The validation of link key candidates is usually performed within an unsuper-
vised setting and is based on two quality measures, namely discriminability and
coverage, which are defined w.r.t the set of links generated by a candidate [5].
Let us introduce L the link set related to the candidate k, and the two sets of
individuals, π1(L) = {a|(a, b) ∈ L} and π2(L) = {b|(a, b) ∈ L}. The coverage
and the discriminability of a set of links L over classes c1 and c2 are defined as
follows:

cov(L, c1, c2) =
|π1(L) ∪ π2(L)|
|I(c1) ∪ I(c2)|

, dis(L, c1, c2) =
min(|π1(L)|, |π2(L)|)

|L|
.

Coverage and discriminability evaluate how close a set of links is to a one-to-
one mapping between individuals of both datasets. Coverage is maximum when
every instance of class c1 is linked to at least one instance of class c2, while
discriminability is maximum when every instance of c1 is linked to at most one
instance of c2. The harmonic mean of coverage and discriminability may be used
to estimate the global quality of a candidate:

hmean(L, c1, c2) =
2 cov(L, c1, c2).dis(L, c1, c2)

cov(L, c1, c2) + dis(L, c1, c2)
.

3 Characteristics of a Representative Set of Link Keys

The number of link key candidates in an lk-lattice can be very large and it can
be very convenient, e.g., for an interactive analysis, to build a representative set
of candidates denoted as RepLkSet, i.e., a subset of candidates which can be
proposed as a summary capturing the significant elements of the original set of
candidates. Three desirable characteristics should be verified by a RepLkSet,
namely the compression rate, the proportion of preserved identity links, and the
preservation of the lk-lattice ordering. Accordingly, the number of candidates
which are retained in a RepLkSet should be low while the compression rate
should be high. For example, the size of a RepLkSet associated with the lk-
lattice given in Figure 2 could be equal to the number of branches (4) in the
lk-lattice, while the preserved identity links could be those lying in the extents
of the candidates k3, k6, and k7.

The candidates are partially ordered within the lk-lattice, where some can-
didates are too general while some others are too specific. Candidates lying in
the upper levels of the lk-lattice have larger extents, i.e., large sets of poten-
tial identity links, than candidates lying in lower levels of the lattice. Then a
particular form of redundancy can be observed where the same set of identity
links can be generated by several candidates, some of which being more general

Discovering a Representative Set of Link Keys in RDF Datasets 7

and thus less easily interpretable than the others. For example, again the set
of candidates {k3, k6, k7} is a good potential representative set of the lk-lattice
ordering as all these candidates are lower bounds of concept intervals in the lk-
lattice branches, i.e., [k1, k3] or [k2, k3], [k4, k6], and [k5, k7]. Below, we formally
define the three main features characterizing a RepLkSet.

• The compression rate of a RepLkSet w.r.t. the lk-lattice. A RepLkSet
should be minimal in size, i.e., the smaller the number of candidates in
RepLkSet the better is the compression rate. Then the compression rate
cr of a RepLkSet w.r.t. an lk-lattice can be calculated as follows:
cr (RepLkSet,lk-lattice) = 1− |RepLkSet|

|lk−lattice|−2

where ⊤ and ⊥ are excluded in the lk-lattice. The compression rate is rang-
ing from from 0 to 1, where the best values are close to 1. It is equal to 0
when |RepLkSet | = |lk-lattice |-2, i.e., there is no compression at all. The
compression rate cannot be equal to 1 as the RepLkSet cannot be empty,
i.e., it is assumed that there exists at least one candidate whose link set
cannot be empty.
For example, if RepLkSet = {k3, k6, k7} for the lk-lattice in Figure 2, the
compression rate is cr = 1− 3/7 ≃ 0.57.

• The proportion of preserved links (ppl). A RepLkSet should preserve a
maximal number of identity links, i.e., the higher the number of identity links
preserved in RepLkSet the better the representativeness of RepLkSet.
The proportion of preserved links ppl is evaluated thanks to the formula:

ppl (RepLkSet,lk-lattice) =
|
⋃

ki∈RepLkSet L(ki)|
|
⋃

kj∈lk−lattice L(kj)| .

It should be noticed that lk-lattice and as well L(kj) cannot be empty sets
(thanks to the definition of a link key candidate). The proportion of preserved
links ppl ranges in]0, 1], cannot be equal to zero, and is equal to 1 when all
identity links are preserved, i.e., RepLkSet = lk-lattice.

• The preservation of the lk-lattice ordering. One requirement in building
RepLkSet is to preserve in the clustering the ordering of the lk-lattice.
Then a cluster should include a set of candidates such that the lower bound
x ∧ y and the upper bound x ∨ y of any pair of candidates x and y are also
included in the cluster (recall that x ∧ y and x ∨ y always exist in a lattice
and are unique). There can be two main options: (i) a cluster is based either
on a concept interval and includes candidates which are forming a chain, (ii)
a cluster is based on a sublattice of the lk-lattice.

These three characteristics cannot be simultaneously optimized but a good
compromise can be achieved, i.e., discovering a small set of candidates forming
the RepLkSet, which maximizes the compression rate and the number of pre-
served identity links, and respects the lk-lattice ordering. It should be noticed
that, given an lk-lattice, the RepLkSet is not unique. In the following, we
make precise the construction of a RepLkSet, starting from an lk-lattice and
using agglomerative hierarchical clustering.

8 N. Abbas et al.

4 The lkclust Algorithm for building a RepLkSet

The lkclust algorithm constructs a representative set of link keys, namely Re-
pLkSet, thanks to agglomerative hierarchical clustering (ahc) [11]. In lkclust
(see Function 1), ahc takes as input the set of candidates in lk-lattice and builds
a hierarchical partition of clusters. One main requirement is that the cluster hi-
erarchy preserves –as much as possible– the partial ordering of concepts in the
lk-lattice. In lkclust, ahc is based on a bottom-up strategy, starting with each
candidate as a singleton cluster and then successively merging pairs of clusters
based on their distance or dissimilarity. ahc stops when all clusters are merged
into a top cluster.

At initialization, the dissimilarity between candidates c1 and c2 is defined as
δ(c1, c2) = 1 − val(c1∧c2)

val(c1∨c2)
, where c1 ∨ c2 ̸= ⊥, i.e., c1 and c2 cannot be ⊥ at the

same time, and val(c) is a function returning the size of the extent of c. The
dissimilarity δ ranges from 0 to 1 and has the following properties:

(i) δ(c1, c2) = 0 iff c1 = c2,
(ii) δ(c1, c2) = δ(c2, c1) (symmetry),
(iii) δ(c1, c2) = 1 iff val(c1∧c2) = 0, then the extents of c1 and c2 are disjoint

and c1 and c2 are not comparable, i.e., c1 ̸≤ c2 and c2 ̸≤ c1, c1, and c2 are lying
in two different chains in the lk-lattice.

By contrast, when c1 and c2 are comparable, say c1 ≤ c2, then δ(c1, c2) =
1 − val(c1)/val(c2) as c1 ∧ c2 = c1 and c1 ∨ c2 = c2. The more c1 is close to
c2 the less is δ(c1, c2). Accordingly the less dissimilar concept c2 from a given
concept c1 is lying among the immediate lower or upper neighbor concepts in
the lk-lattice, i.e., respectively the lower cover or the upper cover (more about
this subject in [12]). More precisely:

Proposition 1. If c1 ≤ c2 ≤ c3 in the lk-lattice then δ(c1, c2) ≤ δ(c1, c3).

Proof. Since c1 ≤ c2, δ(c1, c2) = 1−val(c1∧c2)/val(c1∨c2) = 1−val(c1)/val(c2),
with val(c1) ≤ val(c2). In the same way, c1 ≤ c3, δ(c1, c3) = 1− val(c1)/val(c3),
with val(c1) ≤ val(c3). Since c2 ≤ c3, val(c2) ≤ val(c3), and it comes that
δ(c1, c2) ≤ δ(c1, c3). In particular, if c1 ≤ c2, then c1∧c2 ≤ c1 ≤ c2, and it comes
that δ(c1, c1 ∧ c2) ≤ δ(c1, c2).

Another parameter of ahc is the distance dclust(X,Y) between two clusters
X and Y , actually between a cluster and a singleton cluster. lkclust relies on
the so-called complete linkage, i.e., dclust(X,Y) = max

x∈X,y∈Y
δ(x, y). Single linkage

based on “min” and average linkage based on “mean distance” are other alterna-
tives. However, if all pairs of points from two clusters X and Y are connected
with complete linkage, this yields a “complete linkage” where all possible pairs
are connected. Then, this ensures that dissimilarity between any two concepts
in a cluster is bound by the dissimilarity of the infimum and supremum of the
two concepts in the lk-lattice.

Let us now explain how the lkclust algorithm works. At initialization, in
ahc, all δ(x, y) between singleton clusters x and y should be computed and

Discovering a Representative Set of Link Keys in RDF Datasets 9

k0 k1 k2 k3 k4 k5 k6 k7 k8
k0
k1 0.97

k2 0.97 0.97

k3 0.97 0.14 0.14

k4 0.97 1 1 1

k5 0.98 1 1 1 0.99

k6 0.99 1 1 1 0.71 1

k7 0.99 1 1 1 0.57 0.4 1

k8 1 1 1 1 1 1 1 1

Table 1: Dissimilarity table between
concepts lying in the lk-lattice in Fig-
ure 2. Only values in bold are needed
by the lkclust algorithm.

Fig. 3: Dendrogram built by ahc set up
based on δ and complete linkage.

recorded in a dissimilarity table, as shown in Table 1. However, in lkclust,
thanks to proposition 1, only dissimilarities between neighboring candidates are
computed, marked in bold in Table 1. Instead of computing n.(n− 1)/2 dissimi-
larity values where n is the number of clusters as in ahc, a much smaller number
should be computed in lkclust, depending on the number of neighbors for a
given concept.

Moreover, at each step of ahc, the dissimilarity table should be updated,
requiring the computing of n−2 dissimilarity values, i.e., the number of clusters
minus the two clusters that are merged. Again, in lkclust, this number is much
smaller as it only involves neighbor concepts. This is illustrated in the experi-
ments, when comparing the running times of ahc and lkclust are compared.

For example, the lk-lattice in Figure 2 contains 9 concepts and thus there
are 36 dissimilarity values to compute at initialization. However, as shown in the
dissimilarity table in Table 1, the computation is restricted to pairs of neighbor
concepts, and only 12 values are calculated in fact. At first iteration, either
concepts k1 and k3 or concepts k2 and k3 can be merged as their dissimilarity
value is .14, the merging involving the minimal dissimilarity. In both cases, only
3 values need to be updated among the 7 possibilities at the next step.

The lkclust stops when all clusters are merged into one final cluster cor-
responding to the whole set of candidates. The output can be visualized as a
dendrogram, i.e., a tree-based representation where the clusters are determined
thanks to a cutting level (see Figure 3). Setting a cutting level mainly depends on
the objectives and on the characteristics of the application, and this is discussed
in the next section about experiments.

5 Experiments

The discovery of representative link keys returned by the lkclust algorithm
is evaluated thanks to two series of experiments. Firstly, we demonstrate that

10 N. Abbas et al.

Algorithm 1 The function lkclust iteratively builds the hierarchy of clusters,
minimizing the number of dissimilarity values to be computed.

function lkclust(L : a lattice)
values← createheap()
▷ Computing the dissimilarity values between a concept and its upper cover ◁
for x ∈ L do

for y ∈ cover(x, L) do
d← δ(x, y)
add(values, ⟨x, y⟩, d)

while size(values) > 1 do
▷ Select and merge the clusters with the smallest dissimilarity ◁
⟨x, y⟩, d← extractmin(values)
clust← createclust(x, y, d)
▷ Update the dissimilarity values based on complete linkage ◁
for all (⟨x′, y′⟩, d′) ∈ values do

if (x = x′ or y = x′) then
add(values, ⟨clust, y′⟩, dclust(clust, y′))
remove(values, ⟨x′, y′⟩)

else if (x = y′ or y = y′) then
add(values, ⟨clust, x′⟩, dclust(clust, x′)
remove(values, ⟨x′, y′⟩)

return extractmin(values)

lkclust builds an RepLkSet with good characteristics and with a shorter run-
time than a classical ahc algorithm. We also discuss the effects of selecting a
cutting level in the dendrogram. Secondly, the experiments evaluates the charac-
teristics of the representatives in a cluster, and as well the behavior of lkclust
w.r.t. precision and recall in a supervised setting. The results confirm the high
level capabilities of the lkclust algorithm in link key discovery.

5.1 Datasets and Protocol

The experiments are performed over ten different tasks, where a task consists in
considering two RDF datasets with a set of reference links (a,owl:sameAs,b),
and then to discover the candidates. Seven of these tasks are based on synthetic
datasets proposed by the “Ontology Alignment Initiative” (OAEI)6: (1) Restau-
rants, Person1, and Person2 tasks are taken from OAEI 2010; (2) Doremus tasks
(1-3) about cultural institutions are taken from OAEI 2016; and (3) the SPIM-
Bench task is taken from OAEI 2018. Any pair of the OAEI datasets is based
on the same ontology/schema.

The three remaining tasks represent real-world cases of data interlinking,
where the datasets are based on different ontologies. The “Libraries” task relies on
a sample of datasets provided by two French libraries, namely the “Bibliothèque
nationale de France” (BnF)7 and the “Agence bibliographique de l’enseignement
6 http://oaei.ontologymatching.org/
7 https://data.bnf.fr/

http://oaei.ontologymatching.org/
https://data.bnf.fr/

Discovering a Representative Set of Link Keys in RDF Datasets 11

Task datasets #inst. #prop. #cl. #lkc

Restaurants Restaurant1 339 7 1 13Restaurant2 2,256 7 1

Person1 Person11 2,000 14 1 537Person12 1,000 13 1

Person2 Person21 2,400 14 1 471Person22 800 13 1

Doremus1 PP-1 797 52 1 22BnF-1 692 48 1

Doremus2 PP-2 4,053 52 1 74BnF-2 3,384 54 1

Doremus3 PP-3 940 52 1 26BnF-3 822 53 1

SPIMBench Abox1 1,126 47 3 1,398Abox2 1,130 67 3

Libraries BnF 78,076 414 1 1,594Abes 290,247 128 1

wiki-random Wikidata 1,195 1,531 382 691DBPedia 1,184 413 175

wiki-persons Wikidata 8,314 4,092 65 3,788DBPedia 7,297 332 81

Table 2: Statistics about the datasets considered in the experiments.

supérieur” (Abes)8. They consist in a selection of the most frequent homonyms.
The two last tasks are based on DBPedia and Wikidata samples. The wiki-
random task contains randomly selected data while the wiki-person task consists
in instances of persons sharing a name and a place of birth. Statistics about all
datasets are provided in Table 2.

The lk-lattices are generated thanks to an FCA-based tool (not detailed
here) which performs a basic normalization of data values and deals with prop-
erty composition when possible (the datasets about “wiki” tasks only contain
direct data property values). Moreover, as the size of “Libraries” datasets is very
large, only properties instantiating 15% of subjects are considered. Finally, the
column #lkc in Table 2 represents the number of link key candidates discovered
in each task.

All experiments have been conducted on a laptop equipped with an Intel(R)
Core(TM) i7-10875H CPU @ 2.30GHz and 8GB of memory dedicated to the
JVM. Clustering procedures have been applied to the sets of candidates except-
ing the top and bottom concepts.

5.2 Evaluation of the lkclust algorithm

Below, the two main aspects which are evaluated are the performance of the
lkclust algorithm compared to a classical ahc algorithm and the quality of the
8 https://www.idref.fr/

https://www.idref.fr/

12 N. Abbas et al.

partitioning. The experiments were carried out with four configurations based on
different variations of the two following parameters: (i) the clustering method,
i.e., lkclust or ahc algorithms, (ii) whether the convexity of a cluster is forced
or not. A convex cluster corresponds either to a concept interval (i.e., a chain)
or a sublattice. To ensure the convexity of a cluster, the lkclust algorithm is
modified and skip a candidate group which is not convex.

For every task and every configuration, the running time spent for clustering
and the number of required dissimilarities are recorded. The results are presented
in Figure 4 and in Figure 5. These two figures only show the four tasks in which
the clustering procedure takes at least 2 seconds.

50 100 150 200 250 300 350 400

Libraries

Person1

wiki-persons

SPIMBench

6.67

4.91

106.87

70.19

2.32

4.04

15.87

9.52

19.01

5.03

427.59

131.41

19.82

6.14

440.39

140.03

time (s)

lkclust
lkclust-convex

ahc
ahc-convex

Fig. 4: Four clustering running times in different configurations and interlinking
tasks.

It was expected that configurations based on lkclust algorithm are faster
than those based on a classical ahc algorithm, and this is indeed the case as
shown in Figure 4. ahc works faster when we constrain the algorithm to only
form convex sublattices. Actually, the convexity requirement reduces the number
of possible groupings and therefore the number of dissimilarities to be computed
as shown in Figure 5. In line with these observed runtimes, Figure 5 shows that
the lkclust algorithm significantly reduces the number of calculated dissim-
ilarities. This reduction is even more radical when the convexity constraint is
enforced.

To study the quality of partitions built by lkclust, the compression, link
preservation, and convexity criteria are used. In the four above configurations,
the cutting level is changed from 0 to 1 -excluded- in steps of length 0.1. For
every cutting level, the compression rate, preservation rate, and convexity rate

Discovering a Representative Set of Link Keys in RDF Datasets 13

1 2 3 4 5 6 7

·106

Libraries

Person1

wiki-persons

SPIMBench

2.68 · 105

1.39 · 105

1.1 · 106

4.55 · 105

63,387

85,381

99,183

69,984

1.27 · 106

1.43 · 105

7.17 · 106

9.74 · 105

1.27 · 106

1.43 · 105

7.17 · 106

9.74 · 105

dissimilarities

lkclust
lkclust-convex

ahc
ahc-convex

Fig. 5: The numbers of dissimilarities required in the different configurations and
interlinking tasks.

are monitored. Figure 6 shows the results in the four configurations for the
“SPIMBench” task. The observations that can be made on this task also apply
to the other tasks.

ahc and lkclust show similar results in term of compression and convexity.
When convexity is required, all configurations behave in the same way and almost
all links are preserved, independently of the cutting level. In term of preservation,
ahc preserves more links than lkclust on this task. However, this observation
does not apply necessarily to the other tasks where the preservation is roughly
the same. This difference in preservation is mainly due to the presence of ties
in the dissimilarities. In the event of a tie, a pairing is arbitrarily chosen, which
leads to different partitioning. In this case, ahc tends to favor clusters including
general concepts which are not necessarily neighbors, because the top concept is
omitted.

To sum up, these results show that lkclust is much faster than a classical
version of ahc. In addition, combining lkclust with the convexity constraint
provides the best computation times, preserves almost all the links, while the
compression ratio is slightly lower .

5.3 The Evaluation of the Candidates Lying in a RepLkSet

This second series of experimental results aims at analyzing the impact of lk-
clust on the selection of the best link key candidates, materialized by the
medoids. The medoid in a cluster is the link key candidate whose sum of dissim-
ilarities to all other candidates in the cluster is minimal. Then, while the cutting
level is varied by step of 0.1, the medoids having a discriminability greater than

14 N. Abbas et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

cut level

ahc

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

cut level

ahc-convex

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

cut level

lkclust

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

cut level

lkclust-convex

Compression
Preservation
Convexity

Fig. 6: The variations of compression, link preservation, and convexity w.r.t the
cutting level in the task SPIMBench.

or equal to 0.9 are selected at each step. The union of the links generated by
the selected medoids is evaluated against a gold standard to assess precision and
recall.

Figure 7 shows the precision, recall, and compression ratio that are measured
for the tasks “wiki-random” and “Doremus1”. These two tasks are illustrative of
the observed trends. The compression ratio is computed over the selection of
medoids whose discriminability is higher than 0.9.

On “wiki-random”, the F-measure is almost stable whatever the cutting level.
This shows that the medoids selected thanks to lkclust contain good link key
candidates. We observe the same trends for the tasks “Person1”, “Restaurants”,
“SPIMBench”, and “Libraries”.

Regarding “Doremus1”, there is a drop in recall, while precision remains sta-
ble. For all “Doremus” tasks, this drop appears when the cutting level is high
(> 0.8). For the tasks “Persons2” and “wiki-person”, the recall break is less no-
ticeable, i.e., −0.12 and −0.13 respectively, but occurs earlier, around 0.3. This

Discovering a Representative Set of Link Keys in RDF Datasets 15

drop becomes visible during an acceleration of the compression ratio. However
an acceleration of the compression ratio does not necessarily imply a drop in
recall in the other tasks. These sudden drops in recall could probably be due
to a “discriminability threshold” effect. Indeed, the threshold was arbitrarily set
at 0.9 in all the experiments, but should probably be adapted on a case-by-case
basis.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

cut level

lkclust with wiki-random (disc ≥ 0.9)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

cut level

lkclust with Doremus1 (disc ≥ 0.9)

F-measure
Precision
Recall

Compression

Fig. 7: The variation of quality measures and compression over a selection of link
key candidates having a discriminability greater than 0.9 w.r.t the cutting level.

6 Conclusions and Perspectives

In this paper, we are interested in data interlinking based on the discovery of link
keys generating identity links between individuals lying in two RDF datasets.
Link keys are discovered thanks to FCA algorithms and are organized within a
concept lattice called lk-lattice that can be very large in size, making it difficult
to visualize and to interpret. Thus we introduce a representative set of link key
candidates, i.e., the RepLkSet, which satisfies good properties, namely a high
degree of compression, a high preservation of identity link, and the respect of
the lk-lattice ordering. The RepLkSet is built thanks to an adapted algorithm
named lkclust based on agglomerative hierarchical clustering. Experiments
show that lkclust returns a RepLkSet satisfying the three constraints where
the representatives in each cluster show good recall and precision.

As future work, we would like to study other clustering algorithms and dis-
tance measures to build a RepLkSet, and to characterize the mapping between
an lk-lattice and a RepLkSet. In particular, this approach could also be well-
suited to the difficult task of lattice reduction [4].

16 N. Abbas et al.

References

1. Abbas, N., Bazin, A., David, J., Napoli, A.: Discovery of link keys in resource
description framework datasets based on pattern structures. International Journal
of Approximate Reasoning 161, 108978 (2023)

2. Abbas, N., David, J., Napoli, A.: Discovery of Link Keys in RDF Data Based
on Pattern Structures: Preliminary Steps. In: Proceedings of CLA. pp. 235–246.
CEUR Workshop Proceedings 2668 (2020)

3. Al-Bakri, M., Atencia, M., David, J., Lalande, S., Rousset, M.C.: Uncertainty-
sensitive reasoning for inferring sameAs facts in linked data. In: Proceedings of
ECAI. pp. 698–706 (2016)

4. Aragón, R.G., Medina, J., Ramírez-Poussa, E.: Reducing concept lattices by means
of a weaker notion of congruence. Fuzzy Sets and Systems 418, 153–169 (2021)

5. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey ex-
traction. In: Proceedings of ECAI. pp. 15–20 (2014)

6. Atencia, M., David, J., Euzenat, J.: On the relation between keys and link keys
for data interlinking. Semantic Web Journal 12(4), 547–567 (2021)

7. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate
extraction with relational concept analysis. Discrete Applied Mathematics 273,
2–20 (2020)

8. Atencia, M., David, J., Scharffe, F.: Keys and pseudo-keys detection for web
datasets cleansing and interlinking. In: International Conference on Knowledge
Engineering and Knowledge Management (EKAW). pp. 144–153. Springer LNCS
7603 (2012)

9. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer (2016)
10. Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
11. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster

Analysis. Wiley (2009)
12. Monjardet, B.: Metrics on partially ordered sets—a survey. Discrete Mathematics

35(1), 173–184 (1981)
13. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current

Link Discovery frameworks. Semantic Web Journal 8(3), 419–436 (2017)
14. Pernelle, N., Saïs, F., Symeonidou, D.: An automatic key discovery approach for

data linking. Journal of Web Semantics 23, 16–30 (2013)
15. Symeonidou, D., Armant, V., Pernelle, N., Saïs, F.: SAKey: Scalable Almost Key

Discovery in RDF Data. In: Proceedings of ISWC. pp. 33–49. Springer LNCS 8796
(2014)

16. Symeonidou, D., Galárraga, L., Pernelle, N., Saïs, F., Suchanek, F.M.: VICKEY:
Mining Conditional Keys on Knowledge Bases. In: Proceedings of ISWC. pp. 661–
677. Springer LNCS 10587 (2017)

	Discovering a Representative Set of Link Keys in RDF Datasets

